Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Papa is active.

Publication


Featured researches published by Stefano Papa.


Journal of Immunology | 2007

NK Cells and Cancer

Loris Zamai; Cristina Ponti; Prisco Mirandola; Giuliana Gobbi; Stefano Papa; Laura Galeotti; Lucio Cocco; Marco Vitale

In this review, we overview the main features and functions of NK cells, focusing on their role in cell-mediated immune response to tumor cells. In parallel, we discuss the information available in the field of NK cell receptors and offer a wide general overview of functional aspects of cell targeting and killing, focusing on the recent acknowledgments on the efficacy of NK cells after cytokine and mAb administration in cancer therapy. Since efficacy of NK cell-based immunotherapy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands, as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell-based immunotherapy.


The FASEB Journal | 2010

Melatonin signaling and cell protection function

Francesca Luchetti; Barbara Canonico; Michele Betti; Marcella Arcangeletti; Francesca Pilolli; Marta Piroddi; Laura Canesi; Stefano Papa; Francesco Galli

Besides its well‐known regulatory role on circadian rhythm, the pineal gland hormone melatonin has other biological functions and a distinct metabolism in various cell types and peripheral tissues. In different tissues and organs, melatonin has been described to act as a paracrine and also as an intracrine and autocrine agent with overall homeostatic functions and pleiotropic effects that include cell protection and prosurvival factor. These latter effects, documented in a number of in vitro and in vivo studies, are sustained through both receptor‐dependent and ‐independent mechanisms that control detoxification and stress response genes, thus conferring protection against a number of xenobiotics and endobiotics produced by acute and chronic noxious stimuli. Redox‐sensitive components are included in the cell protection signaling of melatonin and in the resulting transcriptional response that involves the control of NF‐κB, AP‐1, and Nrf2. By these pathways, melatonin stimulates the expression of antioxidant and detoxification genes, acting in turn as a glutathione system enhancer. A further and converging mechanism of cell protection by this indoleamine described in different models seems to lie in the control of damage and signaling function of mitochondria that involves decreased production of reactive oxygen species and activation of the antiapoptotic and redox‐sensitive element Bcl2. Recent evidence suggests that upstream components in this mitochondrial route include the calmodulin pathway with its central role in melatonin signaling and the survival‐promoting component of MAPKs, ERK1/2. In this review article, we will discuss these and other molecular aspects of melatonin signaling relevant to cell protection and survival mechanisms.—Luchetti, F., Canonico, B., Betti, M., Arcangeletti, M., Pilolli, F., Piroddi, M., Canesi, L., Papa, S., Galli, F. Melatonin signaling and cell protection function. FASEB J. 24, 3603–3624 (2010). www.fasebj.org


Cytometry | 2000

Cytofluorometric methods for assessing absolute numbers of cell subsets in blood

Bruno Brando; David Barnett; George Janossy; Francis Mandy; Brigitte Autran; Gregor Rothe; Barbara Scarpati; Giovanna D'Avanzo; Jean‐Luc D'hautcourt; Rodica Lenkei; Gerd Schmitz; Annalisa Kunkl; Rosa Chianese; Stefano Papa; Jan W. Gratama

The enumeration of absolute levels of cells and their subsets in clinical samples is of primary importance in human immunodeficiency virus (HIV)+ individuals (CD4+ T- lymphocyte enumeration), in patients who are candidates for autotransplantation (CD34+ hematopoietic progenitor cells), and in evaluating leukoreduced blood products (residual white blood cells). These measurements share a number of technical options, namely, single- or multiple-color cell staining and logical gating strategies. These can be accomplished using single- or dual-platform counting technologies employing cytometric methods. Dual-platform counting technologies couple the percentage of positive cell subsets obtained by cytometry and the absolute cell count obtained by automated hematology analyzers to derive the absolute value of such subsets. Despite having many conceptual and technical limitations, this approach is traditionally considered as the reference method for absolute cell count enumeration. As a result, the development of single-platform technologies has recently attracted attention with several different technical approaches now being readily available. These single-platform approaches have less sources of variability. A number of reports clearly demonstrate that they provide better coefficients of variation (CVs) in multicenter studies and a lower chance to generate aberrant results. These methods are therefore candidates for the new gold standard for absolute cell assessments. The currently available technical options are discussed in this review together with the results of some cross-comparative studies. Each analytical system has its own specific requirements as far as the dispensing precision steps are concerned. The importance of precision reverse pipetting is emphasized. Issues still under development include the establishment of the critical error ranges, which are different in each test setting, and the applicability of simplified low-cost techniques to be used in countries with limited resources.


Cytometry | 1998

Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells.

Jan W. Gratama; Alberto Orfao; David Barnett; Bruno Brando; Andreas Huber; George Janossy; Hans Erik Johnsen; Michael Keeney; Gerald E. Marti; Frank Preijers; Gregor Rothe; Stefan Serke; D. Robert Sutherland; C. Ellen Van der Schoot; Gerd Schmitz; Stefano Papa

The need for a rapid and reliable marker for the engraftment potential of hematopoietic stem and progenitor cell (HPC) transplants has led to the development of flow cytometric assays to quantitate such cells on the basis of their expression of CD34. The variability associated with enumeration of low-frequency cells (i.e., as low as 0.1% or 5 cells/microl) is exceedingly large, but recent developments have improved the accuracy and precision of the assay. Here, we review and compare the major techniques. Based on the current state of the art, we recommend 1) bright fluorochrome conjugates of class II or III monoclonal antibodies (mAbs) that detect all glycoforms of CD34, 2) use of a vital nucleic acid dye to exclude platelets, unlysed red cells, and debris or use of 7-amino actinomycin D to exclude dead cells during data acquisition, 3) counterstaining with CD45 mAb to be included in the definition of HPC, 4) during list mode data analysis, Boolean gating to resolve the CD34+ HPCs from irrelevant cell populations on the basis of the low levels of CD45 expression and low sideward light-scatter signals of HPCs, 5) inclusion of CD34dim and CD34bright populations in the CD34+ cell count, 6) omission of the negative control staining, and 7) for apheresis products, enumeration of at least 100 CD34+ cells to ensure a 10% precision. Unresolved technical questions are 1) the replacement of conventional dual-platform by single-platform assay formats, i.e., derivation of absolute CD34+ cell counts from a single flow cytometric assessment instead of from combined flow cytometer (percent CD34+) and hematology analyzer (absolute leukocyte count) data, 2) the cross-calibration of the available single-platform assays, and 3) the optimal method for sample preparation. An important clinical question to be addressed is the definition of the precise phenotypes and required numbers of HPCs responsible for short- and long-term recovery to optimize HPC transplant strategies.


Cytometry | 1998

Flow cytometric quantitation of immunofluorescence intensity: Problems and perspectives

Jan W. Gratama; Jean‐Luc D'hautcourt; F. Mandy; Gregor Rothe; David Barnett; George Janossy; Stefano Papa; Gerd Schmitz; Rodica Lenkei

Quantitation of immunofluorescence intensity serves to estimate the number of defined molecules expressed on or in cells. Clinical applications of this diagnostic tool are increasing, e.g., aberrant expression of various antigens (Ag) by leukemic blasts or lymphoma cells, intensity of CD38 expression by CD8+ T-lymphocytes to monitor activation status, and intensity of CD62P to detect platelet activation. In this report we discuss the quality-control measures required for quantitation of fluorescence intensity, and we review seven concepts that have been developed to quantify fluorescence intensity during the past 15 years. Initial work addressed the conversion of logarithmic channel numbers into units of relative fluorescence. The design and use of calibration beads labeled with predefined amounts of dye allowed instrument-independent expression of fluorescence intensity in units of molecules of equivalent soluble fluorochrome (MESF). This method was refined by the combined use of such standards with monoclonal antibodies (mAb) conjugated 1:1 with phycoerythrin (PE), allowing translation of fluorescence intensity into numbers of antibodies bound per cell. Alternatively, the use of 1:1 PE-conjugated mAb under the assumption that CD4+ lymphocytes reproducibly bind 50,000 CD4 mAb molecules was proposed to convert units of relative fluorescence intensity into units of antibodies bound per cell. The use of antibody-binding capacity as a surrogate marker for quantification of Ag expression was addressed more directly by the development of antibody-binding standards. The quantitative indirect immunofluorescence assay is based on beads labeled with various amounts of CD5 mAb that calibrate the binding of the secondary antibody in units of antibody-binding capacity. Alternatively, goat anti-mouse-labeled calibration beads have been developed. Published results obtained with the latter calibrators showed an unexpected inaccuracy. The different ways in which calibrators and cells under study bind mAb (i.e., Fab mediated versus Fc mediated) may have contributed to this variation. Recently, the use of stabilized cell populations expressing Ag in a specified range of concentrations has been proposed as an Ag-specific calibration system of mAb binding. We identify several issues on the level of instrumentation, reagents, and cells under study that should be solved to allow standardization of quantitative assessments of immunofluorescence intensity.


Stem Cells | 2006

Role and Function of Matrix Metalloproteinases in the Differentiation and Biological Characterization of Mesenchymal Stem Cells

Ferdinando Mannello; Gaetana A. Tonti; Gian Paolo Bagnara; Stefano Papa

Matrix metalloproteinases (MMPs), known as matrixins, are Ca‐ and Zn‐dependent endoproteinases involved in a wide variety of developmental and disease‐associated processes, proving to be crucial protagonists in many physiological and pathological mechanisms. The ability of MMPs to alter, by limited proteolysis and through the fine control of tissue inhibitors of metalloproteinases, the activity or function of numerous proteins, enzymes, and receptors suggests that they are also involved in various important cellular functions during development. In this review, we focus on the differentiation of mesenchymal stem cells (including those of the myoblastic, osteoblastic, chondroblastic, neural, and apidoblastic lineages) and the possible, if unexpected, biological significance of MMPs in its regulation. The MMP system has been implicated in several differentiation events that suggests that it mediates the proliferative and prodifferentiating effect of the matrixin proteolytic cascade. We summarize these regulatory effects of MMPs on the differentiation of mesenchymal stem cells and hypothesize on the function of MMPs in the stem cell differentiation processes.


Apoptosis | 2005

Multiple roles of matrix metalloproteinases during apoptosis

F. Mannello; Francesca Luchetti; Elisabetta Falcieri; Stefano Papa

Structural, molecular and biochemical approaches have contributed to piecing together the puzzle of how matrix metalloproteinases (MMPs) work and contribute to various disease processes. However, MMPs have many unexpected substrates other than components of the extracellular matrix which profoundly influence cell behaviour, survival and death. With the current understanding of diverse/novel roles of matrix metalloproteinases—particularly their direct or indirect relevance for the early steps during programmed cell death—some seemingly contrasting results seem less surprising. To better target MMPs an appreciation of their many extracellular, intracellular and intranuclear functions, often acting in opposing directions with paradoxical roles in cell death, is carefully required.


Free Radical Biology and Medicine | 2009

ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells

Francesca Luchetti; Michele Betti; Barbara Canonico; Marcella Arcangeletti; Paola Ferri; Francesco Galli; Stefano Papa

The pineal gland hormone melatonin has been recently described to downregulate the intrinsic (or damage-induced) pathway of apoptosis in human leukocytes. These properties appear to depend on a specific mitochondrial signaling of melatonin which is associated with a lower generation of reactive oxygen species and a better control of redox-sensitive components such as the antiapoptotic protein Bcl-2. Other elements upstream in this signaling are expected to contribute regulatory roles that remain unexplored. The aim of this study was to investigate whether the extracellular signal-regulated kinase (ERK), which controls the balance between survival and death-promoting genes throughout the MAPK pathway, is involved in the antiapoptotic signaling of melatonin. Human monocytic U937 cells irradiated with UVB light were used as a model of stress-induced apoptosis. In this model we found that pharmacological concentrations of melatonin (1 mM) were able to decrease superoxide anion production, mitochondrial damage, and caspase-dependent apoptosis by improved Bcl-2 levels and decreased Cyt c release in the cytoplasm. Moreover, melatonin increased the phosphorylative activation of ERK 1/2 independently from the presence of UVB stress, and decreased the UVB-mediated activation of the stress kinases p38 MAPK and JNK. The ERK 1/2 inhibitor PD98059, but not the p38 MAPK inhibitor SB203580, abolished to different extents the effects that melatonin had on the UVB-induced ROS generation, mitochondrial dysfunction, and apoptosis. Using these inhibitors, a cross-talk effect between stress and survival-promoting kinases was tentatively identified, and confirmed the hierarchical role of ERK MAPK phosphorylation in the signaling of melatonin. In conclusion, melatonin sustains the activation of the survival-promoting pathway ERK MAPK which is required to antagonize UVB-induced apoptosis of U937 cells. This kinase mediates also the antioxidant and mitochondrial protection effects of this hormonal substance that may find therapeutic applications in inflammatory and immune diseases associated with leukocyte oxidative stress and accelerated apoptosis.


British Journal of Haematology | 2000

Reduction of intra‐ and interlaboratory variation in CD34+ stem cell enumeration using stable test material, standard protocols and targeted training

David Barnett; Vivian Granger; Jaco Kraan; Liam Whitby; John T. Reilly; Stefano Papa; Jan-Willem Gratama

The European Working Group on Clinical Cell Analysis (EWGCCA) has, in preparation for a multicentre peripheral blood stem cell clinical trial, developed a single‐platform flow cytometric protocol for the enumeration of CD34+ stem cells. Using this protocol, stabilized blood and targeted training, the EWGCCA have attempted to standardize CD34+ stem cell enumeration across 24 clinical sites. Results were directly compared with participants in the UK National External Quality Assessment Scheme (NEQAS) for CD34+ Stem Cell Quantification that analysed the same specimens using non‐standardized methods. Two bead‐counting systems, Flow‐Count and TruCount, were also evaluated by the EWGCCA participants during trials 2 and 3. Using Flow‐Count, the intralaboratory coefficient of variation (CV) was ≤ 5% in 39% of the laboratories (trial 1), increasing to 65% by trial 3. Interlaboratory variation was reduced from 23.3% (trial 1) to 10.8% in trial 3. In trial 2, 70% of laboratories achieved an intralaboratory CV ≤ 5% using TruCount, increasing to 74% for trial 3; the interlaboratory CV was reduced from 23.4% to 9.5%. Comparative analysis of the EWGCCA and the UK NEQAS cohorts revealed that EWGCCA laboratories, using the standardized approach, had lower interlaboratory variation. Thus, the use of a common standardized protocol and targeted training significantly reduced intra‐ and interlaboratory CD34+ cell count variation.


Journal of Pineal Research | 2006

Melatonin prevents apoptosis induced by UV-B treatment in U937 cell line.

Francesca Luchetti; Barbara Canonico; Rosa Curci; Michela Battistelli; Ferdinando Mannello; Stefano Papa; Giorgio Tarzia; Elisabetta Falcieri

Abstract:  Melatonin influences circadian rhythms and acts as antioxidant and free radical scavenger. UV irradiation triggers multiple cellular events which lead to cell death, in particular to apoptosis; this process involves reactive oxygen species. Apoptotic machinery involves several pathways, in which mitochondria play crucial roles. In this work we have evaluated by means of cytometric, biochemical and ultrastructural approaches, if incubation of U937 promonocytic leukemia cells with melatonin may affect apoptotic behavior induced by UV‐B. The cell line was treated with 1 mm melatonin before and after UV‐B exposure. Melatonin pretreatment significantly reduced the number of apoptotic cells, as revealed by FITC Annexin‐V and propidium iodide assays (P < 0.005), as well as attenuated mitochondria alterations, as shown by ultrastructural morphology, Mito Tracker and JC‐1 staining, and cytochrome c (cyt c) release (P < 0.005). On the contrary, incubation with melatonin after UV‐B exposure significantly protect U937 cells from UV‐B induced alterations, showing a possible delay of the apoptotic machinery (as revealed by the presence of earlier stages of apoptosis and significant cyt c release). Our results suggest that, in our experimental model, melatonin may play a role as noncytotoxic anti‐apoptotic compound and, at least in part, may protect U937 cells from UV‐B induced mitochondria dysfunction/damage.

Collaboration


Dive into the Stefano Papa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge