Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Ravaioli is active.

Publication


Featured researches published by Stefano Ravaioli.


Future Microbiology | 2011

Scenery of Staphylococcus implant infections in orthopedics

Lucio Montanaro; Pietro Speziale; Davide Campoccia; Stefano Ravaioli; Ilaria Cangini; Sandro Giannini; Carla Renata Arciola

Infection is still the major complication of orthopedic implants and projections based on the actual trend indicate that total hip and knee arthroplasties and their consequent infection burden are destined to greatly increase. Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of orthopedic implant infection. Here we report on epidemiology of implant-related Staphylococcus infections in orthopedics, also referring to our experience, and focus on the crucial role of bacterial adhesins and on their ability to direct the pathogenesis process. Bacteria initiate implant infection by adhering to biomaterials. In the early steps of infection, adhesins mediate the specific interaction between microbial cells and the extracellular matrix proteins filming biomaterial surface. Then adhesin-mediated anchorage allows bacteria to cling to the biomaterial surface and to produce a biofilm that favors their ability to resist antibiotics. With the aim to prevent implant-related infections, anti-infective and infection-resistant biomaterials are being developed. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. Vaccines against the adhesins or antisense molecules against virulence genes can open a future in combating implant infections.


International Journal of Artificial Organs | 2011

Extracellular DNA in biofilms.

Lucio Montanaro; Alessandro Poggi; Livia Visai; Stefano Ravaioli; Davide Campoccia; Pietro Speziale; Carla Renata Arciola

Extracellular DNA (eDNA) is an important biofilm component that was recently discovered. Its presence has been initially observed in biofilms of Pseudomonas aeruginosa, Streptococcus intermedius, Streptococcus mutans, then Enterococcus faecalis and staphylococci. Autolysis is the common mechanism by which eDNA is released. In P. aeruginosa eDNA is generated by lysis of a bacterial subpopulation, under control of quorum sensing system. In E. faecalis autolysis proceeds in a fratricide mode, resulting from a process similar to necrosis of eukaryotic cells. In Staphylococcus aureus autolysis originates by an altruistic suicide, i.e., a programmed cell death similar to apoptosis of eukaryotic cells. In S. aureus autolysis is mediated by murein hydrolase, while in S. epidermidis by the autolysin protein AtlE. In P. aeruginosa eDNA is located primarily in the stalks of mushroom-shaped multicellular structures. In S. aureus the crucial role of eDNA in stabilizing biofilm is highlighted by the disgregating effect of DNase I. eDNA represents an important mechanism for horizontal gene transfer in bacteria. eDNA and other microbial structural motifs are recognized by the innate immune system via the TLR family of pattern recognition receptors (PRRs).


Frontiers in Cellular and Infection Microbiology | 2015

Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects

Carla Renata Arciola; Davide Campoccia; Stefano Ravaioli; Lucio Montanaro

Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.


Biomaterials | 2008

Molecular epidemiology of Staphylococcus aureus from implant orthopaedic infections: ribotypes, agr polymorphism, leukocidal toxins and antibiotic resistance.

Davide Campoccia; Lucilla Baldassarri; Valter Pirini; Stefano Ravaioli; Lucio Montanaro; Carla Renata Arciola

Staphylococcus aureus is a leading pathogen of implant-related infections. In the field of biomaterials a variety of alternative approaches are currently proposed for prophylaxis and treatment of implant infections, but little is known on the role of the different pathogenetic mechanisms and spreading strategies that lead selected S. aureus clones to prevail and become epidemic. This study aimed at identifying and characterizing the major clones in a collection of 200 S. aureus isolates from implant orthopaedic infections. Strain typing by automated ribotyping identified 98 distinct ribogroups. Ribogroups corresponded to specific accessory gene regulatory (agr) polymorphisms and possessed peculiar arrangements of toxins. The agr type II allele was more represented in epidemic clones, while agr type I in sporadic clones. A clear trend was observed, where epidemic clones resisted antibiotics more than sporadic ones. Conversely, the gene for lukD/lukE leukotoxin, found in 68% of the isolates, was unrelated to the level of clonal spreading. Surprisingly, the isolates of the most prevalent ribogroup were susceptible to almost all antibiotics and never possessed the lukD/lukE gene, thus suggesting the role of factors other than antibiotic resistance and the here investigated toxins in driving the major epidemic clone to the larger success.


Biomaterials | 2009

The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections

Davide Campoccia; Pietro Speziale; Stefano Ravaioli; Ilaria Cangini; Simonetta Rindi; Valter Pirini; Lucio Montanaro; Carla Renata Arciola

Staphylococcus aureus is a major, highly clonal, pathogen causing implant infections. This study aimed at investigating the diverse distribution of bacterial adhesins in most prevalent S. aureus strain types causing orthopaedic implant infections. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes. Within the collection of isolates, automated ribotyping detected 98 distinct ribogroups. For many ribogroups, characteristic tandem genes arrangements could be identified. In the predominant S. aureus cluster, enlisting 27 isolates, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. This study suggests that specific adhesins may synergistically act in the onset of implant infections and that anti-adhesin strategies should be targeted to adhesins conjointly present.


International Journal of Artificial Organs | 2012

Staphylococcus lugdunensis, an aggressive coagulase-negative pathogen not to be underestimated

Stefano Ravaioli; Laura Selan; Livia Visai; Valter Pirini; Davide Campoccia; Alessandra Maso; Pietro Speziale; Lucio Montanaro; Carla Renata Arciola

The new emerging coagulase-negative pathogen Staphylococcus lugdunensis is responsible for severe cardiac and joint infections. Since the biochemical phenotypic systems designed for the identification of CoNS do not appear to be species specific and are hardly reliable for the discrimination of S. lugdunensis from other staphylococci, its precise identification requires fine molecular methods. The pathogenic mechanisms by which S. lugdunensis causes severe infections are not yet completely elucidated and in this review its virulence and toxic determinants are surveyed as well as its adhesins and biofilm production.


International Journal of Artificial Organs | 2011

Biofilm extracellular-DNA in 55 Staphylococcus epidermidis clinical isolates from implant infections.

Stefano Ravaioli; Davide Campoccia; Livia Visai; Valter Pirini; Ilaria Cangini; Tolmino Corazzari; Alessandra Maso; Claudio Poggio; Francesco Pegreffi; Lucio Montanaro; Carla Renata Arciola

Biofilm formation is broadly recognized as an important virulence factor in many bacterial species implicated in implant-related opportunistic infections. In spite of a long history of research and many investigative efforts aimed at elucidating their chemical composition, structure, and function, the nature of bacterial biofilms still remains only partly revealed. Over the years, different extracellular polymeric substances (EPS) have been described that contribute functionally and structurally to the organization of biofilms. Recently extracellular DNA (eDNA) has emerged as a quantitatively conspicuous and potentially relevant structural component of microbial biofilms of many microbial species, Staphylococcus aureus and S. epidermidis among them. The present study aims at comparatively investigating the amount of eDNA present in the biofilm of 55 clinical isolates of S. epidermidis from postsurgical and biomaterial-related orthopedic infections. Quantification of eDNA was performed by a non-destructive method directly on bacterial biofilms formed under static conditions on the plastic surface of 96-well plates.


Journal of Biomedical Materials Research Part A | 2009

Cluster analysis of ribotyping profiles of Staphylococcus epidermidis isolates recovered from foreign body-associated orthopedic infections.

Davide Campoccia; Lucio Montanaro; Christof von Eiff; Valter Pirini; Stefano Ravaioli; Karsten Becker; Carla Renata Arciola

Staphylococcus epidermidis is an opportunistic pathogen of major clinical interest for its high prevalence in implant-associated infections. However, only little information is available on the phylogeny of its major clonal entities and their virulence and resistance markers. Therefore, purpose of this study was to characterize four clusters identified by automated ribotyping of 70 isolates derived from orthopedic, mostly foreign body-related infections. The ica locus, encoding the polysaccharide intercellular adhesin, the IS256 insertion element as well as the resistance to gentamicin, clindamycin, chloramphenicol, and ciprofloxacin were all traits uniquely observed in two of these clusters. The phylogenetic analysis of the S. epidermidis clusters offered a detailed insight into the clonal origin of exopolysaccharide- producing and multiresistant strains with transposons appearing to be actively involved in genetic exchanges.


International Journal of Artificial Organs | 2011

Exopolysaccharide production by Staphylococcus epidermidis and its relationship with biofilm extracellular DNA

Davide Campoccia; Lucio Montanaro; Stefano Ravaioli; Valter Pirini; Ilaria Cangini; Carla Renata Arciola

Implant-related infections are difficult to treat because they are very often associated with biofilm-forming micro-organisms capable of resisting host immune defenses and surviving conventional antibiotic treatments. In Staphylococcus epidermidis biofilm-forming strains, the polysaccharide intercellular adhesin (PIA), whose expression is encoded by the icaADBC operon, is recognized as a main staphylococcal accumulation mechanism. Nevertheless, various observations have shown that PIA expression is dispensable and a variety of additional/alternative accumulation mechanisms, including extracellular DNA (eDNA) and several other factors of proteic nature, can compensate for icaADBC low expression or even for its absence. A suggestive hypothesis points to the possibility that changes in biofilm extracellular matrix composition can be induced in different environmental niches. In this study we aimed at investigating the relationship between the exopolysaccharide and eDNA biofilm components, screening 55 S. epidermidis clinical isolates by means of a simple fluorescence-based microtiter-plate assay. Our findings indicate the existence of a certain degree of correlation, although not a strict one, between eDNA and the exopolysaccharide component. The presence of exopolysaccharide greatly varied even in strains belonging to the same strain type determined by automated riboprinting.


Journal of Biomedical Materials Research Part A | 2016

Orthopedic implant infections: Incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts

Davide Campoccia; Francesca Testoni; Stefano Ravaioli; Ilaria Cangini; Alessandra Maso; Pietro Speziale; Lucio Montanaro; Livia Visai; Carla Renata Arciola

Septic failure is still the major complication of prosthetic implants. Entering host cells, bacteria hide from host immune defenses, shelter from extracellular antibiotics, and cause chronic infection. Staphylococcus aureus, the leading etiologic agent of orthopedic implant infections, is able to enter bone cells and induce osteoblast apoptosis, osteoclast recruitment, and highly destructive osteomyelitis. Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis are opportunistic pathogens causative of implant-related infections. This study investigated the ability to internalize into osteoblastic MG63 cells of 22 S. epidermidis, 9 S. lugdunensis, and 21 E. faecalis clinical isolates from orthopedic implant infections. Isolates were categorized in clusters by ribotyping. Internalization assay was carried out by means of a microtiter plate-based method. S. epidermidis, S. lugdunensis, and E. faecalis strains turned out incompetent to enter osteoblasts, exhibiting negligible internalization into MG63 cells, nearly three orders of magnitude lower than that of S. aureus. Osteoblast invasion does not appear as a pathogenetic mechanism utilized by S. epidermidis, S. lugdunensis, or E. faecalis for infecting orthopedic implants. Moreover, it can be inferred that intracellularly active antimicrobials should not be necessary against implant infections caused by the three bacterial species. Finally, implications with the uptake of biomaterial microparticles by nonphagocytic cells are enlightened.

Collaboration


Dive into the Stefano Ravaioli's collaboration.

Top Co-Authors

Avatar

Carla Renata Arciola

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Davide Campoccia

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucilla Baldassarri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Tolmino Corazzari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge