Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefano Regis is active.

Publication


Featured researches published by Stefano Regis.


Human Mutation | 2010

Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease.

Barbara Tappino; Roberta Biancheri; Matthew Mort; Stefano Regis; Fabio Corsolini; Andrea Rossi; Marina Stroppiano; Susanna Lualdi; Agata Fiumara; Bruno Bembi; Maja Di Rocco; David Neil Cooper; Mirella Filocamo

The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.P318R, p.G323R, p.I384T, p.Y490N), most of the newly described lesions altered mRNA processing. These included 7 frameshift mutations (c.61delG, c.408delA, c.521delA, c.1171_1175delCATTCinsA, c.1405_1407delCTCinsT, c.302_308dupAAATAGG, c.1819_1826dupGTTACAGG), 3 nonsense mutations (p.R69X, p.K88X, p.R127X) one of which (p.K88X) mediated the skipping of exon 2, and a splicing mutation (c.1489+1G>A) which induced the partial skipping of exon 13. In addition, 6 previously unreported GALC polymorphisms were identified. The functional significance of the novel GALC missense mutations and polymorphisms was investigated using the MutPred analysis tool. This study, reporting one of the largest genotype‐phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian GALC mutational profile differs significantly from other populations of European origin. This is due in part to a GALC missense substitution (p.G553R) that occurs at high frequency on a common founder haplotype background in patients originating from the Naples region.


European Journal of Human Genetics | 1999

An Asn > Lys substitution in saposin B involving a conserved amino acidic residue and leading to the loss of the single N-glycosylation site in a patient with metachromatic leukodystrophy and normal arylsulphatase A activity.

Stefano Regis; Mirella Filocamo; Fabio Corsolini; Francesco Caroli; J. L. M. Keulemans; Otto P. van Diggelen; Rosanna Gatti

Sphingolipid activator proteins are small glycoproteins required for the degradation of sphingolipids by specific lysosomal hydrolases. Four of them, called saposins, are encoded by the prosaposin gene, the product of which is proteolytically cleaved into the four mature saposin proteins (saposins A, B, C, D). One of these, saposin B, is necessary in the hydrolysis of sulphatide by arylsulphatase A where it presents the solubilised substrate to the enzyme. As an alternative to arylsulphatase A deficiency, deficiency of saposin B causes metachromatic leukodystrophy. We identified a previously undescribed mutation (N215K) in the prosaposin gene of a patient with metachromatic leukodystrophy but with normal arylsulphatase A activity and elevated sulphatide in urine. The mutation involves a highly conserved amino acidic residue and abolishes the only N-glycosylation site of saposin B.


Journal of Inherited Metabolic Disease | 2012

Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts

Massimo Aureli; Rosaria Bassi; Nicoletta Loberto; Stefano Regis; Alessandro Prinetti; Vanna Chigorno; Johannes M. F. G. Aerts; Rolf G. Boot; Mirella Filocamo; Sandro Sonnino

Gaucher disease (GD) is the most common lysosomal disorder and is caused by an inherited autosomal recessive deficiency in β-glucocerebrosidase. This enzyme, like other glycohydrolases involved in glycosphingolipid (GSL) metabolism, is present in both plasma membrane (PM) and intracellular fractions. We analyzed the activities of CBE-sensitive β-glucosidase (GBA1) and AMP-DNM-sensitive β-glucosidase (GBA2) in total cell lysates and PM of human fibroblast cell lines from control (normal) subjects and from patients with GD clinical types 1, 2, and 3. GBA1 activities in both total lysate and PM of GD fibroblasts were low, and their relative percentages were similar to those of control cells. In contrast, GBA2 activities were higher in GD cells than in control cells, and the degree of increase differed among the three GD types. The increase of GBA2 enzyme activity was correlated with increased expression of GBA2 protein as evaluated by QRT-PCR. Activities of β-galactosidase and β-hexosaminidase in PM were significantly higher for GD cells than for control cells and also showed significant differences among the three GD types, suggesting the occurrence of cross-talk among the enzymes involved in GSL metabolism. Our findings indicate that the profiles of glycohydrolase activities in PM may provide a valuable tool to refine the classification of GD into distinct clinical types.


Human Mutation | 2009

Molecular Characterization of 22 Novel UDP-N-Acetylglucosamine-1-Phosphate Transferase α- and β-Subunit (GNPTAB) Gene Mutations Causing Mucolipidosis Types IIα/β and IIIα/β in 46 Patients

Barbara Tappino; Nadia Chuzhanova; Stefano Regis; Andrea Dardis; Fabio Corsolini; Marina Stroppiano; Emmanuel Tonoli; Tommaso Beccari; Camillo Rosano; Ján Mucha; Mariana Blanco; Marina Szlago; Maja Di Rocco; David Neil Cooper; Mirella Filocamo

Mutational analysis of the GNPTAB gene was performed in 46 apparently unrelated patients with mucolipidosis IIα/β or IIIα/β, characterized by the mistargeting of multiple lysosomal enzymes as a consequence of a UDP‐GlcNAc‐1‐phosphotransferase defect. The GNPTAB mutational spectrum comprised 25 distinct mutant alleles, 22 of which were novel, including 3 nonsense mutations (p.Q314X, p.R375X, p.Q507X), 5 missense mutations (p.I403T, p.C442Y, p.C461G, p.Q926P, p.L1001P), 6 microduplications (c.749dupA, c.857dupA, c.1191_1194dupGCTG, c.1206dupT, c.1331dupG, c.2220_2221dupGA) and 8 microdeletions (c.755_759delCCTCT, c.1399delG, c.1959_1962delTAGT, c.1965delC, c.2550_2554delGAAAA, c.3443_3446delTTTG, c.3487_3490delACAG, c.3523_3529delATGTTCC). All micro‐duplications/deletions were predicted to result in the premature termination of translation. A novel exonic SNP (c.303G>A; E101E) was identified which is predicted to create an SFRS1 (SF2/ASF) binding site that may be of potential functional/clinical relevance. This study of mutations in the GNPTAB gene, the largest yet reported, extends our knowledge of the mutational heterogeneity evident in MLIIα/β/MLIIIα/β.


Human Genetics | 2002

Contribution of arylsulfatase A mutations located on the same allele to enzyme activity reduction and metachromatic leukodystrophy severity.

Stefano Regis; Fabio Corsolini; Marina Stroppiano; Roberto Cusano; Mirella Filocamo

Abstract. The occurrence of different mutations on the same arylsulfatase A allele is not uncommon, due to the high frequency of several variants, among which the pseudodeficiency mutations are particularly important. We identified a late infantile metachromatic leukodystrophy patient carrying on one allele the new E253K mutation and the known T391S polymorphism, and on the other allele the common P426L mutation, usually associated with the adult or juvenile form of the disease, and the N350S and *96A>G pseudodeficiency mutations. To analyze the contribution of mutations located on the same allele to enzyme activity reduction, as well as the possible phenotype implications, we performed transient expression experiments using arylsulfatase A cDNAs carrying the identified mutations separately and in combination. Our results indicate that mutants containing multiple mutations cause a greater reduction of ARSA activity than do the corresponding single mutants, the total deficiency likely corresponding to the sum of the reductions attributed to each mutation. Consequently, each mutation may contribute to ARSA activity reduction, and, therefore, to the degree of disease severity. This is particularly important for the alleles containing a disease-causing mutation and the pseudodeficiency mutations: in these alleles pseudodeficiency could play a role in affecting the clinical phenotype.


Orphanet Journal of Rare Diseases | 2011

Molecular Genetic Analysis of the PLP1 Gene in 38 Families with PLP1-related disorders: Identification and Functional Characterization of 11 Novel PLP1 Mutations

Serena Grossi; Stefano Regis; Roberta Biancheri; Matthew Mort; Susanna Lualdi; Enrico Bertini; Graziella Uziel; Odile Boespflug-Tanguy; Alessandro Simonati; Fabio Corsolini; Ercan Demir; Valentina Marchiani; Antonio Percesepe; Franco Stanzial; Andrea Rossi; Catherine Vaurs-Barrière; David Neil Cooper; Mirella Filocamo

BackgroundThe breadth of the clinical spectrum underlying Pelizaeus-Merzbacher disease and spastic paraplegia type 2 is due to the extensive allelic heterogeneity in the X-linked PLP1 gene encoding myelin proteolipid protein (PLP). PLP1 mutations range from gene duplications of variable size found in 60-70% of patients to intragenic lesions present in 15-20% of patients.MethodsForty-eight male patients from 38 unrelated families with a PLP1-related disorder were studied. All DNA samples were screened for PLP1 gene duplications using real-time PCR. PLP1 gene sequencing analysis was performed on patients negative for the duplication. The mutational status of all 14 potential carrier mothers of the familial PLP1 gene mutation was determined as well as 15/24 potential carrier mothers of the PLP1 duplication.Results and ConclusionsPLP1 gene duplications were identified in 24 of the unrelated patients whereas a variety of intragenic PLP1 mutations were found in the remaining 14 patients. Of the 14 different intragenic lesions, 11 were novel; these included one nonsense and 7 missense mutations, a 657-bp deletion, a microdeletion and a microduplication. The functional significance of the novel PLP1 missense mutations, all occurring at evolutionarily conserved residues, was analysed by the MutPred tool whereas their potential effect on splicing was ascertained using the Skippy algorithm and a neural network. Although MutPred predicted that all 7 novel missense mutations would be likely to be deleterious, in silico analysis indicated that four of them (p.Leu146Val, p.Leu159Pro, p.Thr230Ile, p.Ala247Asp) might cause exon skipping by altering exonic splicing elements. These predictions were then investigated in vitro for both p.Leu146Val and p.Thr230Ile by means of RNA or minigene studies and were subsequently confirmed in the case of p.Leu146Val. Peripheral neuropathy was noted in four patients harbouring intragenic mutations that altered RNA processing, but was absent from all PLP1-duplication patients. Unprecedentedly, family studies revealed the de novo occurrence of the PLP1 duplication at a frequency of 20%.


Biochimica et Biophysica Acta | 2009

PLP1 gene duplication causes overexpression and alteration of the PLP/DM20 splicing balance in fibroblasts from Pelizaeus-Merzbacher disease patients

Stefano Regis; Serena Grossi; Fabio Corsolini; Roberta Biancheri; Mirella Filocamo

The PLP1 gene encodes two protein isoforms (PLP and DM20) which represent the predominant protein portion in myelin of the central nervous system. The two products are generated from the same primary transcript by alternative splicing. Defects of the PLP1 gene cause Pelizaeus-Merzbacher disease (PMD) or X-linked spastic paraplegia type 2 (SPG2). Duplication of the PLP1 gene is the most frequent gene defect, usually responsible for the classic form of PMD. To investigate the effects of PLP1 gene over dosage on gene expression, we analysed the PLP/DM20 expression profile in fibroblasts from three PMD patients with a PLP1 gene duplication. Gene expression was evaluated by real-time PCR using two different PLP1 amplicons and two different reference genes (GAPDH and GUSB). Fibroblasts from the three patients showed a 4-5 fold increase of PLP1 gene expression compared to fibroblasts from three normal controls. The contribution of the two alternatively spliced transcript isoforms (PLP and DM20) to the whole PLP1 gene expression was investigated using a DM20-specific amplicon. The three patients showed a decrease of the DM20/(DM20+PLP) ratio in comparison to the three normal controls, suggesting a prominent contribution of the PLP transcript to the PLP1 gene overexpression detected in the patients. Therefore, PLP1 gene duplication seems to result both in overexpression and in a shift of the PLP/DM20 splicing balance in direction of the PLP isoform.


Human Mutation | 2008

Molecular analysis of ARSA and PSAP genes in twenty-one Italian patients with metachromatic leukodystrophy: identification and functional characterization of 11 novel ARSA alleles.

Serena Grossi; Stefano Regis; Camillo Rosano; Fabio Corsolini; Graziella Uziel; Maria Sessa; Maja Di Rocco; Giancarlo Parenti; Federica Deodato; Vincenzo Leuzzi; Roberta Biancheri; Mirella Filocamo

Metachromatic leukodystrophy (MLD), the demyelinating disorder resulting from impaired sulfatide catabolism, is caused by allelic mutations of the Arylsulfatase A (ARSA) locus except for extremely rare cases of Saposin‐B (Sap‐B) deficiency. We characterized twenty‐one unrelated Italian patients among which seventeen were due to ARSA activity deficiency and 4 others resulted from Saposin‐B defect. Overall, we found 20 different mutant ARSA alleles and 2 different Sap‐B alleles. The eleven new ARSA alleles (c.53C>A; c.88G>C; c.372G>A; c.409_411delCCC; c.634G>C; [c.650G>A;c.1108C>T]; c.845A>G; c.906G>C; c.919G>T; c.1102‐3C>G; c.1126T>A) were functionally characterized and the novel amino acid changes were also modelled into the three‐dimensional structure. The present study is aimed at providing a broader picture of the molecular basis of MLD in the Italian population. It also emphasizes the importance of a comprehensive evaluation in MLD diagnosis including biochemical, enzymatic and molecular investigations.


Neurogenetics | 2005

Diagnosis of Pelizaeus–Merzbacher disease: detection of proteolipid protein gene copy number by real-time PCR

Stefano Regis; Serena Grossi; Susanna Lualdi; Roberta Biancheri; Mirella Filocamo

Duplication of the proteolipid protein gene (PLP1) is the most frequent cause of Pelizaeus–Merzbacher disease (PMD), a severe X-linked myelination disorder. We developed an assay for the detection of the PLP1 gene dosage by real-time quantitative PCR using the ABI Prism 7700 Sequence Detection System and the TaqMan chemistry. Copy number of the PLP1 gene was determined by the standard curve method using GAPDH as the reference gene. The assay was tested both on 50 normal controls and on 20 subjects whose PLP1 gene copy number was previously determined by quantitative fluorescent multiplex PCR. The procedure confirmed the expected results both on the male and female normal controls as well as on the 20 subjects previously tested. Ratios corresponding to the presence of one, two or three PLP1 gene copies, distributed in three non-overlapping ranges, were obtained by real-time PCR analysis. Subsequently, 29 DNA samples of putative PMD patients and possible female carriers, with unknown PLP1 gene dosage, were analysed. Five affected males carrying the PLP1 gene duplication and four female heterozygotes carrying three PLP1 gene copies were identified among them. The method is suitable for the identification of affected male patients and female carriers. Specific ranges are widely spaced, ensuring a correct assignment of the PLP1 gene copy number.


Clinical Genetics | 2008

Genotype–phenotype correlation in five Pelizaeus–Merzbacher disease patients with PLP1 gene duplications

Stefano Regis; Roberta Biancheri; Enrico Bertini; Alberto Burlina; Susanna Lualdi; M. G. Bianco; R. Devescovi; Andrea Rossi; Graziella Uziel; Mirella Filocamo

Pelizaeus–Merzbacher disease (PMD) is an X‐linked myelination disorder most frequently caused by duplication of a genomic segment of variable length containing the PLP1 gene. We studied five PMD male patients affected by the classic PMD form carrying a PLP1 gene duplication. On the basis of clinical and neuroradiological features, two of the five patients appeared to be the most severely affected. In order to establish a possible genotype–phenotype correlation, the extent of the duplication was determined in each patient and in the respective mother by quantifying the copy number of genomic markers surrounding the PLP1 gene by a real‐time PCR‐based approach. Duplications, ranging in size from 167–195 to 580–700 kb, were in the same genomic interval of the majority of the reported duplications. The extent of the duplicated genomic segments does not correlate with the clinical severity. Interestingly enough, each duplication had one of the two breakpoints in or near to low copy repeats (LCRs), supporting recent evidence concerning a possible role of LCRs in the generation of the duplications in PMD.

Collaboration


Dive into the Stefano Regis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Corsolini

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosanna Gatti

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Gloria Bonuccelli

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Maja Di Rocco

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serena Grossi

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Susanna Lualdi

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge