Stefano V. Albrecht
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano V. Albrecht.
Ai Magazine | 2015
Stefano V. Albrecht; J. Christopher Beck; David L. Buckeridge; Adi Botea; Cornelia Caragea; Chi-Hung Chi; Theodoros Damoulas; Bistra Dilkina; Eric Eaton; Pooyan Fazli; Sam Ganzfried; C. Lee Giles; Sébastien Guillet; Robert C. Holte; Frank Hutter; Thorsten Koch; Matteo Leonetti; Marius Lindauer; Marlos C. Machado; Yuri Malitsky; Gary F. Marcus; Sebastiaan Meijer; Francesca Rossi; Arash Shaban-Nejad; Sylvie Thiébaux; Manuela M. Veloso; Toby Walsh; Can Wang; Jie Zhang; Yu Zheng
We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems.
Artificial Intelligence | 2018
Stefano V. Albrecht; Peter Stone
Abstract Much research in artificial intelligence is concerned with the development of autonomous agents that can interact effectively with other agents. An important aspect of such agents is the ability to reason about the behaviours of other agents, by constructing models which make predictions about various properties of interest (such as actions, goals, beliefs) of the modelled agents. A variety of modelling approaches now exist which vary widely in their methodology and underlying assumptions, catering to the needs of the different sub-communities within which they were developed and reflecting the different practical uses for which they are intended. The purpose of the present article is to provide a comprehensive survey of the salient modelling methods which can be found in the literature. The article concludes with a discussion of open problems which may form the basis for fruitful future research.
Autonomous Agents and Multi-Agent Systems | 2017
Stefano V. Albrecht; Somchaya Liemhetcharat; Peter Stone
This special issue of the Journal of Autonomous Agents and Multi-Agent Systems sought research articles on the emerging topic of multiagent interaction without prior coordination. Topics of interest included empirical and theoretical investigations of issues arising from assumptions of prior coordination, as well as solutions in the form of novel models and algorithms for effective multiagent interaction without prior coordination.
Journal of Artificial Intelligence Research | 2016
Stefano V. Albrecht; Subramanian Ramamoorthy
Dynamic Bayesian networks (DBNs) are a general model for stochastic processes with partially observed states. Belief filtering in DBNs is the task of inferring the belief state (i.e. the probability distribution over process states) based on incomplete and noisy observations. This can be a hard problem in complex processes with large state spaces. In this article, we explore the idea of accelerating the filtering task by automatically exploiting causality in the process. We consider a specific type of causal relation, called passivity, which pertains to how state variables cause changes in other variables. We present the Passivity-based Selective Belief Filtering (PSBF) method, which maintains a factored belief representation and exploits passivity to perform selective updates over the belief factors. PSBF produces exact belief states under certain assumptions and approximate belief states otherwise, where the approximation error is bounded by the degree of uncertainty in the process. We show empirically, in synthetic processes with varying sizes and degrees of passivity, that PSBF is faster than several alternative methods while achieving competitive accuracy. Furthermore, we demonstrate how passivity occurs naturally in a complex system such as a multi-robot warehouse, and how PSBF can exploit this to accelerate the filtering task.
international joint conference on artificial intelligence | 2017
Stefano V. Albrecht; Subramanian Ramamoorthy
Dynamic Bayesian networks (DBNs) are a general model for stochastic processes with partially observed states. Belief filtering in DBNs is the task of inferring the belief state (i.e. the probability distribution over process states) based on incomplete and uncertain observations. In this article, we explore the idea of accelerating the filtering task by automatically exploiting causality in the process. We consider a specific type of causal relation, called passivity, which pertains to how state variables cause changes in other variables. We present the Passivity-based Selective Belief Filtering (PSBF) method, which maintains a factored belief representation and exploits passivity to perform selective updates over the belief factors. PSBF is evaluated in both synthetic processes and a simulated multi-robot warehouse, where it outperformed alternative filtering methods by exploiting passivity.
adaptive agents and multi agents systems | 2012
Stefano V. Albrecht; Ram Ramamoorthy
adaptive agents and multi agents systems | 2013
Stefano V. Albrecht; Subramanian Ramamoorthy
adaptive agents and multi agents systems | 2012
Stefano V. Albrecht; Subramanian Ramamoorthy
Artificial Intelligence | 2016
Stefano V. Albrecht; Jacob W. Crandall; Subramanian Ramamoorthy
uncertainty in artificial intelligence | 2014
Stefano V. Albrecht; Subramanian Ramamoorthy