Stefano Vanni
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano Vanni.
Science | 2015
Joachim Moser von Filseck; Alenka Čopič; Vanessa Delfosse; Stefano Vanni; Catherine L. Jackson; William Bourguet; Guillaume Drin
Membrane contact sites promote lipid exchange Most membrane lipids are manufactured in the endoplasmic reticulum (ER). Different organelles and the plasma membrane (PM) have distinct phospholipid compositions. Chung et al., working in mammalian cells, and Moser von Filseck et al., working in yeast, both describe how a family of proteins is important in maintaining the balance of lipids within the cell. These special proteins accumulate at and tether contact sites between the ER and the PM and promote the exchange of specific phospholipids, which helps to maintain the PMs distinct identity. Science, this issue pp. 428 and 432 A phosphatidylinositol 4-phosphate gradient drives phosphatidylserine transport from the endoplasmic reticulum to the plasma membrane. In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein–related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.
Science | 2014
Mathieu Pinot; Stefano Vanni; Sophie Pagnotta; Sandra Lacas-Gervais; Laurie-Anne Payet; Thierry Ferreira; Romain Gautier; Bruno Goud; Bruno Antonny; Hélène Barelli
Bending the benefits of polyunsaturates We have often heard that it is beneficial to eat polyunsaturated fatty acids. We also know that some organelles such as synaptic vesicles are extremely rich in polyunsaturated lipids. However, what polyunsaturated lipids do in our body is unclear. Using cell biology, biochemical reconstitutions, and molecular dynamics, Pinot et al. show that polyunsaturated phospholipids can change the response of membranes to proteins involved in membrane curvature sensing, membrane shaping, and membrane fission. Polyunsaturated phospholipids make the plasma membrane more amenable to deformation; facilitate endocytosis; and, in reconstitution experiments, increased membrane fission by the dynamin-endophilin complex. Science, this issue p. 693 Certain membrane lipids adapt their conformation to membrane curvature, facilitating membrane deformation and fission. Phospholipids (PLs) with polyunsaturated acyl chains are extremely abundant in a few specialized cellular organelles such as synaptic vesicles and photoreceptor discs, but their effect on membrane properties is poorly understood. Here, we found that polyunsaturated PLs increased the ability of dynamin and endophilin to deform and vesiculate synthetic membranes. When cells incorporated polyunsaturated fatty acids into PLs, the plasma membrane became more amenable to deformation by a pulling force and the rate of endocytosis was accelerated, in particular, under conditions in which cholesterol was limiting. Molecular dynamics simulations and biochemical measurements indicated that polyunsaturated PLs adapted their conformation to membrane curvature. Thus, by reducing the energetic cost of membrane bending and fission, polyunsaturated PLs may help to support rapid endocytosis.
Biophysical Journal | 2013
Stefano Vanni; Lydie Vamparys; Romain Gautier; Guillaume Drin; Catherine Etchebest; Patrick F. J. Fuchs; Bruno Antonny
Sensing membrane curvature allows fine-tuning of complex reactions that occur at the surface of membrane-bound organelles. One of the most sensitive membrane curvature sensors, the Amphipathic Lipid Packing Sensor (ALPS) motif, does not seem to recognize the curved surface geometry of membranes per se; rather, it recognizes defects in lipid packing that arise from membrane bending. In a companion paper, we show that these defects can be mimicked by introducing conical lipids in a flat lipid bilayer, in agreement with experimental observations. Here, we use molecular-dynamics (MD) simulations to characterize ALPS binding to such lipid bilayers. The ALPS motif recognizes lipid-packing defects by a conserved mechanism: peptide partitioning is driven by the insertion of hydrophobic residues into large packing defects that are preformed in the bilayer. This insertion induces only minor modifications in the statistical distribution of the free packing defects. ALPS insertion is severely hampered when monounsaturated lipids are replaced by saturated lipids, leading to a decrease in packing defects. We propose that the hypersensitivity of ALPS motifs to lipid packing defects results from the repetitive use of hydrophobic insertions along the monotonous ALPS sequence.
Nature Communications | 2014
Stefano Vanni; Hisaaki Hirose; Hélène Barelli; Bruno Antonny; Romain Gautier
Two parameters of biological membranes, curvature and lipid composition, direct the recruitment of many peripheral proteins to cellular organelles. Although these traits are often studied independently, it is their combination that generates the unique interfacial properties of cellular membranes. Here, we use a combination of in vivo, in vitro and in silico approaches to provide a comprehensive map of how these parameters modulate membrane adhesive properties. The correlation between the membrane partitioning of model amphipathic helices and the distribution of lipid-packing defects in membranes of different shape and composition explains how macroscopic membrane properties modulate protein recruitment by changing the molecular topography of the membrane interfacial region. Furthermore, our results suggest that the range of conditions that can be obtained in a cellular context is remarkably large because lipid composition and curvature have, under most circumstances, cumulative effects.
Biophysical Journal | 2013
Lydie Vamparys; Romain Gautier; Stefano Vanni; W. F. Drew Bennett; D. Peter Tieleman; Bruno Antonny; Catherine Etchebest; Patrick F. J. Fuchs
In biological membranes, changes in lipid composition or mechanical deformations produce defects in the geometrical arrangement of lipids, thus allowing the adsorption of certain peripheral proteins. Here, we perform molecular dynamics simulations on bilayers containing a cylindrical lipid (PC) and a conical lipid (DOG). Profiles of atomic density and lateral pressure across the bilayer show differences in the acyl chain region due to deeper partitioning of DOG compared to PC. However, such analyses are less informative for the interfacial region where peripheral proteins adsorb. To circumvent this limitation, we develop, to our knowledge, a new method of membrane surface analysis. This method allows the identification of chemical defects, where hydrocarbon chains are accessible to the solvent, and geometrical defects, i.e., voids deeper than the glycerol backbone. The size and number of both types of defects increase with the number of monounsaturated acyl chains in PC and with the introduction of DOG, although the defects do not colocalize with the conical lipid. Interestingly, the size and probability of the defects promoted by DOG resemble those induced by positive curvature, thus explaining why conical lipids and positive curvature can both drive the adsorption of peripheral proteins that use hydrophobic residues as membrane anchors.
Nature Communications | 2015
Joachim Moser von Filseck; Stefano Vanni; Bruno Mesmin; Bruno Antonny; Guillaume Drin
Lipids are unevenly distributed within eukaryotic cells, thus defining organelle identity. How non-vesicular transport mechanisms generate these lipid gradients between membranes remains a central question. Here using quantitative, real-time lipid transport assays, we demonstrate that Osh4p, a sterol/phosphatidylinositol-4-phosphate (PI(4)P) exchanger of the ORP/Osh family, transports sterol against its gradient between two membranes by dissipating the energy of a PI(4)P gradient. Sterol transport is sustained through the maintenance of this PI(4)P gradient by the PI(4)P-phosphatase Sac1p. Differences in lipid packing between membranes can stabilize sterol gradients generated by Osh4p and modulate its lipid exchange capacity. The ability of Osh4p to recognize sterol and PI(4)P via distinct modalities and the dynamics of its N-terminal lid govern its activity. We thus demonstrate that an intracellular lipid transfer protein actively functions to create a lipid gradient between membranes.
Trends in Cell Biology | 2015
Bruno Antonny; Stefano Vanni; Hideo Shindou; Thierry Ferreira
Cellular phospholipids (PLs) differ by the nature of their polar heads as well as by the length and unsaturation level of their fatty acyl chains. We discuss how the ratio between saturated, monounsaturated, and polyunsaturated PLs impacts on the functions of such organelles as the endoplasmic reticulum, synaptic vesicles, and photoreceptor discs. Recent experiments and simulations suggest that polyunsaturated PLs respond differently to mechanical stress, including membrane bending, than monounsaturated PLs owing to their unique conformational plasticity. These findings suggest a rationale for PL acyl chain remodeling by acyltransferases and a molecular explanation for the importance of a balanced fatty acid diet.
The Journal of Membrane Biology | 2015
Zoe Cournia; Toby W. Allen; Ioan Andricioaei; Bruno Antonny; Daniel Baum; Grace Brannigan; Nicolae-Viorel Buchete; Jason T. Deckman; Lucie Delemotte; Coral del Val; Ran Friedman; Paraskevi Gkeka; Hans Christian Hege; Jérôme Hénin; Marina A. Kasimova; Antonios Kolocouris; Michael L. Klein; Syma Khalid; M. Joanne Lemieux; Norbert Lindow; Mahua Roy; Jana Selent; Mounir Tarek; Florentina Tofoleanu; Stefano Vanni; Sinisa Urban; David J. Wales; Jeremy C. Smith; Ana-Nicoleta Bondar
Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
eLife | 2016
Maud Magdeleine; Romain Gautier; Pierre Gounon; Hélène Barelli; Stefano Vanni; Bruno Antonny
When small phosphatidylcholine liposomes are added to perforated cells, they bind preferentially to the Golgi suggesting an exceptional avidity of this organelle for curved membranes without stereospecific interactions. We show that the cis golgin GMAP-210 accounts for this property. First, the liposome tethering properties of the Golgi resembles that of the amphipathic lipid-packing sensor (ALPS) motif of GMAP-210: both preferred small (radius < 40 nm) liposomes made of monounsaturated but not saturated lipids. Second, reducing GMAP-210 levels or redirecting its ALPS motif to mitochondria decreased liposome capture by the Golgi. Extensive mutagenesis analysis suggests that GMAP-210 tethers authentic transport vesicles via the same mechanism whereby the ALPS motif senses lipid-packing defects at the vesicle surface through its regularly spaced hydrophobic residues. We conclude that the Golgi uses GMAP-210 as a filter to select transport vesicles according to their size and bulk lipid composition. DOI: http://dx.doi.org/10.7554/eLife.16988.001
bioRxiv | 2018
Mathieu Pinot; Stefano Vanni; Ernesto E. Ambroggio; Bruno Goud; Jean-Baptiste Manneville
Lipid packing defects favor the binding of proteins to cellular membranes by creating spaces between lipid head groups that allow the insertion of amphipathic helices or lipid modifications. The density of packing defects in a lipid membrane is well known to increase with membrane curvature and in the presence of conical-shaped lipids. In contrast, the role of membrane tension in the formation of lipid packing defects has been poorly investigated. Here we use a combination of numerical simulations and experiments to measure the effect of membrane tension on the density of lipid packing defects. We first monitor the binding of ALPS (amphipathic lipid packing sensor) to giant unilamellar vesicles and observe a striking periodic binding of ALPS that we attribute to osmotically-induced membrane tension and transient membrane pore formation. Using micropipette aspiration experiments, we show that a high membrane tension induces a reversible increase in the density of lipid packing defects. We next focus on packing defects induced by lipid shape and show that conical lipids generate packing defects similar to that induced by membrane tension and enhance membrane deformation due to the insertion of the ALPS helix. Both cyclic ALPS binding and the cooperative effect of ALPS binding and conical lipids on membrane deformation result from an interplay between helix insertion and lipid packing defects created by membrane tension, conical lipids and/or membrane curvature. We propose that feedback mechanisms involving membrane tension, lipid shape and membrane curvature play a crucial role in membrane deformation and intracellular transport events.