Stefano Zamuner
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefano Zamuner.
Journal of Clinical Psychopharmacology | 2011
Emiliangelo Ratti; Kevin M. Bellew; Paolo Bettica; Heather Bryson; Stefano Zamuner; Graeme Archer; Lisa Squassante; Alan Bye; David G. Trist; K. Ranga Rama Krishnan; Sofia Fernandes
Clinical study results for neurokinin (NK) receptor antagonists in the treatment of depression have been mixed, with Phase III studies failing to fulfill the early promise demonstrated in Phase II studies. Casopitant, a selective NK1 antagonist that achieves nearly complete receptor occupancy was studied in 2 randomized, placebo-controlled, double-blind, Phase II trials in depressed outpatients to test the hypothesis that nearly complete NK1 receptor occupancy is required to achieve antidepressant efficacy. Study 092 used an interactive voice response system to recruit depressed patients with baseline Hamilton Depression (17-item, HAMD17) total scores higher than 24 who were randomized to fixed-dose casopitant 30 mg/d, 80 mg/d, or placebo for 8 weeks (n = 356). Study 096 required Carroll Depression Scale-Revised self-assessment scores of higher than 24 for randomization to casopitant 120 mg/d, paroxetine 30 mg/d (both reached via forced titration), or placebo for 8 weeks (n = 362). In study 092, casopitant 80 mg but not 30 mg achieved statistically significant improvement versus placebo on the primary outcome measure, week 8 last observation carried forward change from baseline HAMD17 (difference = −2.7; 95% confidence interval, −5.1 to −0.4, P = 0.023). In study 096, neither casopitant nor paroxetine achieved statistical separation from placebo at end point on HAMD17 (casopitant difference = −1.7; 95% CI, −3.8 to 0.4, P = 0.282). Casopitant and paroxetine were generally well tolerated in most patients. These studies suggest that NK1 antagonists that have nearly complete receptor occupancy may be effective in the treatment of depression.
Journal of Cerebral Blood Flow and Metabolism | 2011
Sergio Abanades; Jasper van der Aart; Carmine Marzano; Graham Searle; Cristian Salinas; Javaad J Ahmad; Richard R. Reiley; Sabina Pampols-Maso; Stefano Zamuner; Vincent J. Cunningham; Eugenii A. Rabiner; Marc Laruelle; Roger N. Gunn
Positron emission tomography (PET) is used in drug development to assist dose selection and to establish the relationship between blood and tissue pharmacokinetics (PKs). We present a new biomathematical approach that allows prediction of repeat-dose (RD) brain target occupancy (TO) using occupancy data obtained after administration of a single dose (SD). A PET study incorporating a sequential adaptive design was conducted in 10 healthy male adults who underwent 4 PET scans with [11C]DASB ([11C]N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine): 1 at baseline, 2 after 20 mg SD of the 5-hydroxytryptamine transporter (5-HTT) inhibitor duloxetine, and 1 after 4 days daily administration of 20 mg duloxetine. An adaptive design was used to select optimal times after SD for measurement of occupancy. Both direct and indirect PK/TO models were fitted to the SD data to characterise the model parameters and then applied to a predicted RD duloxetine plasma time course to predict the 5-HTT occupancy after RD. Repeat-dose prediction from the indirect model (OC50=2.62±0.93 ng/mL) was significantly better (P<0.05) than that from the direct model (OC50=2.29±1.11 ng/mL). This approach increases the value of SD occupancy studies that are performed as part of first time in human drug development programmes by providing an estimate of the dose required to achieve the desired TO at RD.
Synapse | 2011
Roger N. Gunn; Venkatesha Murthy; Ana M. Catafau; Graham Searle; Santiago Bullich; Mark Slifstein; Daniele Ouellet; Stefano Zamuner; Raul Herance; Cristian Salinas; Ricardo Pardo-Lozano; Eugenii A. Rabiner; Magí Farré; Marc Laruelle
The current interest in developing Glycine transporter Type 1 (GlyT‐1) inhibitors, for diseases such as schizophrenia, has led to the demand for a GlyT‐1 PET molecular imaging tool to aid drug development and dose selection. We report on [11C]GSK931145 as a novel GlyT‐1 imaging probe in primate and man. Primate PET studies were performed to determine the level of specific binding following homologous competition with GSK931145 and the plasma‐occupancy relationship of the GlyT‐1 inhibitor GSK1018921. Human PET studies were performed to determine the test–retest reproducibility of [11C]GSK931145 and the plasma‐occupancy relationship of GSK1018921. [11C]GSK931145 entered primate and human brain and yielded a heterogeneous pattern of uptake which was similar in both species with highest uptake in midbrain, thalamus, and cerebellum. Homologous competition in primates indicated no viable reference region and gave binding potential estimates between 1.5 and 3 for midbrain, thalamus and cerebellum, While the distribution and binding potential values were similar across species, both the plasma free fraction (fP: 0.8 vs. 8%) and delivery (K1: 0.025 vs. 0.126 ml cm−3 min−1) were significantly lower in humans. Test–retest reproducibility in humans calculated using a two tissue compartmental model was poor (VAR(VT): 29–38%), but was improved using a pseudo reference tissue model (VAR(BPND): 16–23%). GSK1018921 EC50 estimates were 22.5 and 45.7 ng/ml in primates and humans, respectively. Synapse, 2011.
Drug Metabolism and Disposition | 2011
Cecilia Renzulli; Mike Nash; Mark Wright; Steven Thomas; Stefano Zamuner; Mario Pellegatti; Paolo Bettica; Gary W. Boyle
N-[[(2S)-1-[[5-(4-fluorophenyl)-2-methyl-4-thiazolyl]carbonyl]-2-piperidinyl]methyl]-4-benzofurancarboxamide (SB-649868) is a novel orexin 1 and 2 receptor antagonist under development for insomnia treatment. The disposition of [14C]SB-649868 was determined in eight healthy male subjects using an open-label study design after a single oral dose of 30 mg. Blood, urine, and feces were collected at frequent intervals after dosing, and samples were analyzed by high-performance liquid chromatography-mass spectrometry coupled with off-line radiodetection for metabolite profiling and characterization. NMR spectroscopy was also used to further characterize certain metabolites. Elimination of drug-related material was almost complete over a 9-day period, occurring principally via the feces (79%), whereas urinary excretion accounted only for 12% of total radioactivity. Mean apparent half-life (t1/2) of plasma radioactivity was notably longer (39.3 h), with respect to that of unchanged SB-649868 (4.8 h), suggesting the presence of more slowly cleared metabolites. SB-649868 and an unusual hemiaminal metabolite, M98 (2-[((2S)-1-{[5-(4-fluorophenyl)-2-methyl-1,3-thiazol-4-yl]carbonyl}-2-piperidinyl)methyl]-3,5-dihydroxy-3,4-dihydro-1(2H)-isoquinolinone; GSK2329163), resulting from oxidation of the benzofuran ring and subsequent rearrangement, were the principal circulating components in plasma extracts. Two additional minor metabolites were also observed: a benzofuran ring-opened carboxylic acid M25 ([2-({[((2S)-1-{[5-(4-fluorophenyl)-2-methyl-1,3-thiazol-4-yl]carbonyl}-2-piperidinyl)methyl]amino}carbonyl)-6-hydroxyphenyl]acetic acid; GSK2329158) and an amine metabolite (M8). SB-649868 was extensively metabolized, and only negligible amounts were excreted unchanged. The principal route of metabolism was via oxidation of the benzofuran ring with the resultant M25 being the principal metabolite in excreta, representing at least 12% of the administered dose across urine and feces.
Clinical Pharmacology & Therapeutics | 2010
Stefano Zamuner; V. L. Di Iorio; Joakim Nyberg; R. N. Gunn; V. J. Cunningham; Roberto Gomeni; Andrew C. Hooker
Positron emission tomography (PET) is an imaging technique that is used to investigate ligand–receptor binding in the living brain and to determine the time course of plasma concentration/receptor occupancy (RO). The purpose of this work was to demonstrate the added value of an adaptive‐optimal design for PET scan timings and dose selection over traditional study designs involving fixed or educated selections of timings and doses. A kon–koff model relating plasma concentration to PET data was applied to generate the simulated data. Optimization was performed on scanning timings and doses using the D‐optimality criterion. Optimal designs as applied to scanning timings provided unbiased estimates and improved the accuracy of results relative to those of fixed and educated designs. Optimization of both timings and dose provided improvements in accuracy and precision when the initial dose selection was noninformative regarding the time course of RO. These results indicate that adaptive‐optimal designs can provide an efficient experimental design for RO studies using PET, by minimizing the number of subjects required and maximizing information related to the plasma concentration–RO relationship.
Nuclear Medicine and Biology | 2002
Stefano Zamuner; Roberto Gomeni; Alan Bye
Positron-Emission Tomography (PET) is an imaging technology currently used in drug development as a non-invasive measure of drug distribution and interaction with biochemical target system. The level of receptor occupancy achieved by a compound can be estimated by comparing time-activity measurements in an experiment done using tracer alone with the activity measured when the tracer is given following administration of unlabelled compound. The effective use of this surrogate marker as an enabling tool for drug development requires the definition of a model linking the brain receptor occupancy with the fluctuation of plasma concentrations. However, the predictive performance of such a model is strongly related to the precision on the estimate of receptor occupancy evaluated in PET scans collected at different times following drug treatment. Several methods have been proposed for the analysis and the quantification of the ligand-receptor interactions investigated from PET data. The aim of the present study is to evaluate alternative parameter estimation strategies based on the use of non-linear mixed effect models allowing to account for intra and inter-subject variability on the time-activity and for covariates potentially explaining this variability. A comparison of the different modeling approaches is presented using real data. The results of this comparison indicates that the mixed effect approach with a primary model partitioning the variance in term of Inter-Individual Variability (IIV) and Inter-Occasion Variability (IOV) and a second stage model relating the changes on binding potential to the dose of unlabelled drug is definitely the preferred approach.
Journal of Pharmacokinetics and Pharmacodynamics | 2010
Roberto Bizzotto; Stefano Zamuner; Giuseppe De Nicolao; Mats O. Karlsson; Roberto Gomeni
Hypnotic drug development calls for a better understanding of sleep physiology in order to improve and differentiate novel medicines for the treatment of sleep disorders. On this basis, a proper evaluation of polysomnographic data collected in clinical trials conducted to explore clinical efficacy of novel hypnotic compounds should include the assessment of sleep architecture and its drug-induced changes. This work presents a non-linear mixed-effect Markov-chain model based on multinomial logistic functions which characterize the time course of transition probabilities between sleep stages in insomniac patients treated with placebo. Polysomnography measurements were obtained from patients during one night treatment. A population approach was used to describe the time course of sleep stages (awake stage, stage 1, stage 2, slow-wave sleep and REM sleep) using a Markov-chain model. The relationship between time and individual transition probabilities between sleep stages was modelled through piecewise linear multinomial logistic functions. The identification of the model produced a good adherence of mean post-hoc estimates to the observed transition frequencies. Parameters were generally well estimated in terms of CV, shrinkage and distribution of empirical Bayes estimates around the typical values. The posterior predictive check analysis showed good consistency between model-predicted and observed sleep parameters. In conclusion, the Markov-chain model based on multinomial logistic functions provided an accurate description of the time course of sleep stages together with an assessment of the probabilities of transition between different stages.
British Journal of Clinical Pharmacology | 2011
Marieke Liem-Moolenaar; Mandana Rad; Stefano Zamuner; Adam F. Cohen; Francesca Lemme; Kari L. Franson; Joop M. A. van Gerven; Emilio Merlo Pich
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Several lines of evidence suggest a possible role of 5-HT(6) receptor antagonists in dementia or cognitive dysfunction of schizophrenia. SB-742457 is a potent 5-HT(6) antagonist and has shown efficacy in different animal models of cognitive impairment. It is currently in development as a cognitive enhancer. Risperidone, commonly used to control agitation and psychotic features in both schizophrenia and Alzheimers disease, is a D(2)/5-HT(2A ) antagonist with low affinity for 5-HT(6) receptors and limited effects on cognitive parameters. WHAT THIS STUDY ADDS • As the combination of risperidone and SB-742457 may constitute a reasonable combination in cognitively impaired patients, pharmacodynamic interaction effects were investigated in this study. The only significant drug-drug interaction was a small increase of electroencephalogram (EEG) alpha and beta bands, which might suggest mild arousing activity of SB-742457 on the central nervous system-depressant effects of risperidone. The clinical relevance of these findings in patients remains to be established. Additionally, this study provided an extensive multidimensional pharmacodynamic profile of risperidone in healthy volunteers, showing that this antipsychotic suppresses motor performance (eye-hand coordination, finger tapping and postural stability), alertness, memory and neurophysiological functions (saccadic eye movements and EEG power spectrum). AIM Several lines of evidence suggest a possible role of 5-HT(6 ) receptor antagonists in cognitive dysfunction of schizophrenia. Atypical antipsychotics, such as risperidone, are currently used in these disorders. Therefore, the pharmacological interactions between the 5-HT(6) antagonist SB-742457 and risperidone were investigated in the light of possible co-medication. METHODS A randomized, double-blind, two-way crossover design was used to study the interaction between multiple doses SB-742457 50 mg and a single dose risperidone 2 mg in 18 healthy subjects. RESULTS Treatment was well tolerated. The most common adverse event was somnolence in 83% during the combination vs. 50% of subjects after risperidone, 32% after placebo and 11% after SB-742457. Combination treatment produced a statistically significant increase in the maximum plasma concentration of risperidone and had no effect on SB-742457 pharmacokinetics. Risperidone decreased saccadic peak velocity, finger tapping, adaptive tracking, subjective alertness, delayed word recognition and body sway and increased electroencephalogram (EEG) theta power and prolactin. The only pharmacodynamic interaction of risperidone and SB-742457 was an increase of absolute EEG alpha (ratio = 1.25, 95% CI = 1.11, 1.40, P= 0.0004) and beta power (ratio = 1.14, 95% CI = 1.03, 1.27, P= 0.016). No significant effects of SB-742457 alone were found. CONCLUSION The pharmacokinetic interactions between SB-742457 and risperidone detected in this study were not clinically relevant. The increase in EEG alpha and beta power is incompatible with enhanced risperidone activity, but could point to mild arousing effects of the combination. Most pharmacodynamic changes of risperidone are consistent with previously reported data. The potential cognitive effects of SB-742457 remain to be established.
Arthritis Research & Therapy | 2013
Ernest Choy; Marina Bendit; Dana McAleer; Feng Liu; Maria Feeney; Sara Brett; Stefano Zamuner; Andrea M. Campanile; John Toso
IntroductionOncostatin M (OSM) has been implicated in the pathophysiology of rheumatoid arthritis (RA) through its effect on inflammation and joint damage. GSK315234 is a humanised anti-OSM Immunoglobulin G1 (IgG1) monoclonal antibody (mAb). This 3-part study examines the safety, tolerability and efficacy of GSK315234 in patients with active RA.MethodThis was a 3-part (Parts A, B and C), multicenter study. Part A and Part B were randomised, double-blind, placebo-controlled, Bayesian adaptive dose finding studies to investigate the safety, tolerability, efficacy, pharmacokinetics and pharmacodynamics of single (Part A) and 3 repeat (Part B) intravenous infusions of GSK315234 in patients with active RA on a background of methotrexate (MTX). Part C was a single dose, randomised, single-blind, placebo-controlled study to assess subcutaneously administered GSK315234 to patients with active RA on a background of MTX.ResultThe primary endpoint of the study was mean change in DAS28 at Day 28 in Part A and Day 56 in Part B and C. All patients receiving at least one dose of GSK315234 were included in safety analysis. In Part A, there were statistically significant differences in DAS28 between 3 mg/kg and placebo at Day 56, 84 and 91. There was also a statistically significant difference in DAS28 between 0.3 mg/kg, 3 mg/kg and 10 mg/kg, as compared to placebo, at Day 84. Although these changes were small and occurred late, they supported progression to Part B and C to determine the therapeutic potential of GSK315234. For Part B, no significant difference was observed between 6 mg/kg and placebo. For Part C, a statistically significant difference in DAS28 was observed at Day 40, Day 84 and Day 100 between the 500 mg subcutaneous group, as compared to placebo. No significant findings were observed at any of the time points for EULAR response criteria, ACR20, ACR50 or ACR70. An exploratory analysis of clinical, pharmacokinetic and pharmacodynamics data suggests the lack of efficacy may be due to moderate binding affinity and rapid off-rate of GSK315234 as compared to the higher affinity OSM receptor causing a protein carrier effect prolonging the half life of OSM due to accumulation of the OSM/antibody complex in the serum and synovial fluid.ConclusionOur data highlighted the importance of binding affinity and off-rate effect of a mAb to fully neutralize the target and how this may influence its efficacy and potentially worsen disease activity. Using an anti-OSM mAb with high affinity should test this hypothesis and examine the potential of OSM as a therapeutic target in RA.Trial registrationClinicalTrials.gov no: NCT00674635
Sleep | 2013
Emiliangelo Ratti; David J. Carpenter; Stefano Zamuner; Sofia Fernandes; Lisa Squassante; Heidi Danker-Hopfe; Graeme Archer; Jonathan Robertson; Robert Alexander; David G. Trist; Emilio Merlo-Pich
STUDY OBJECTIVES Investigate the hypnotic effects of repeated doses of neurokinin-1 receptor antagonist, vestipitant, in primary insomnia. DESIGN Randomized, double-blind, placebo-controlled 28-day parallel-group study. SETTING Eleven sleep centers in Germany. PATIENTS One hundred sixty-one patients with primary insomnia. INTERVENTIONS Patients received vestipitant (15 mg) or placebo for 28 days; 2-night polysomnographic assessment occurred on nights 1/2 and 27/28. MEASUREMENTS AND RESULTS Wake after sleep onset (WASO) was improved on nights 1/2 and 27/28 (ratio, vestipitant versus placebo [95% confidence interval]: 0.76 [0.65, 0.90], P = 0.001 and 0.79 [0.65, 0.96], P = 0.02, respectively), demonstrating maintenance of the effect following repeated dosing. Latency to persistent sleep was shorter with vestipitant on nights 1/2 (P = 0.0006 versus placebo), but not on nights 27/28. Total sleep time (TST) improved with vestipitant (nights 1/2: P < 0.0001, nights 27/28: P = 0.02 versus placebo). Next-day cognitive function tests demonstrated no residual effects of vestipitant (P > 0.05 versus placebo). Adverse events (AEs) occurred in 25% of vestipitant patients versus 22% for placebo. Headache was the most common AE (8% of vestipitant patients versus 9% for placebo). CONCLUSIONS Vestipitant improved sleep maintenance in patients with primary insomnia, with no associated next-day cognitive impairment. The effects on wake after sleep onset and total sleep time were maintained following repeated dosing.