Stefanos Dailianis
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefanos Dailianis.
Marine Environmental Research | 2003
Stefanos Dailianis; G.P. Domouhtsidou; E.K. Raftopoulou; Martha Kaloyianni; V.K. Dimitriadis
The neutral red lysosomal retention assay (NRR) of the haemocytes, and the acetylcholinesterase activity (AChE) in the haemolymph, the digestive gland, the gills and the mantle/gonad complex have been evaluated on mussels Mytilus galloprovincialis collected from Thermaikos and Strymonikos gulfs (northern Greece) in June and October 2001. The validity of performing the above core biomarkers is supported, firstly by their ability to respond to different pollution levels and, secondly, by the significant linear correlation among them. The evaluation of the micronuclei frequency (MN) has been performed in gill tissue and haemocytes of the same mussels and, according to the results, it needs more research in order its use as stress indices to be validated. In addition, the first results on cAMP levels in the gills, the mantle/gonad complex and the digestive gland, whose concentrations correlated to both, NRR and AChE introduce this signal transduction molecule as a new, promising biomarker.
Aquatic Toxicology | 2011
Dimitrios Danellakis; Ioanna Ntaikou; Michalis Kornaros; Stefanos Dailianis
This study investigated the impact of olive mill wastewater (OMW) as a pollutant of the marine environment, via the detection of stress indice alterations in mussels Mytilus galloprovincialis. Due to the absence of data concerning the levels of OMW in the receiving waters, mortality test (96h) was first performed in order to estimate the range of OMW concentration where no mortality occurs. OMW concentrations ranging from 0.01 to 0.1% (v/v) showed no increased mortality and thus were used for the determination of pre-pathological alterations in tissues of mussels. In particular, mussels exposed to either 0.1 or 0.01% (v/v) OMW for 5 days showed significant alterations of stress indices in their tissues. Specifically, decreased neutral red retention (NRR) assay time values, inhibition of acetylcholinesterase (AChE) activity, as well as a significant increase of micronucleus (MN) frequency and DNA damage were detected in haemolymph/haemocytes and gills, compared with values measured in tissues of control mussels. The results of the present study showed that OMW disposal into the marine environment could induce pre-pathological alterations in marine organisms, before severe disturbances, such as disease, mortality, or population changes occur.
Free Radical Research | 2005
Stefanos Dailianis; Styllianos M. Piperakis; Martha Kaloyianni
The objective of the present study was to elucidate the events that are involved in reactive oxygen species (ROS) production and DNA damage after adrenergic receptors stimulation by cadmium, in relation to cAMP, protein kinase C (PKC) and Na+/H+ exchanger (NHE). Cadmium (50 μM) caused increased levels of ROS with a concomitant increase in DNA damage in digestive gland of Mytilus galloprovincialis. Either the use of EIPA, a NHE blocker, or calphostin C, the inhibitor of PKC, reduced cadmium effects. Cells treated with α1-, α2-, β- and β1- adrenergic antagonists together with cadmium reversed cadmium alone effects, while the respective adrenergic agonists, phenylephrine and isoprenaline, mimic cadmium effects. Moreover, cadmium caused an increase in the levels of cAMP in digestive gland cells that were reversed after NHE and PKC inhibition as well as in the presence of each type of adrenergic antagonist. The different sensitivity of α1-, α2-, β-, β1- adrenergic receptors on ROS, cAMP production and DNA damage possibly leads to the induction of two signaling pathways that may be interacting or to the presence of a compensatory pathway that acts in concert with the α- and β- adrenergic receptors. In these signaling pathways PKC and NHE play significant role.
Journal of Hazardous Materials | 2013
Eirini Toufexi; Vasiliki Tsarpali; Ioanna Efthimiou; Maria-Sophia Vidali; Dimitris Vlastos; Stefanos Dailianis
The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (O₂(-)) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes.
Fish & Shellfish Immunology | 2009
Stefanos Dailianis
The present study investigates cadmium (Cd) ability to enhance superoxides (O(2-)) and nitric oxide (NO) production (as nitrites) in haemocytes of mussel Mytilus galloprovincialis as well as the possible involvement of Na(+)/H(+) exchanger (NHE) in the induction of NADPH oxidase and NO synthase activity. PMA, a well-known PKC-mediated NADPH oxidase as well as NO synthase stimulator was also used, in order to verify Cd effects on both O(2-) and NO generation. According to the results of the present study, micromolar concentrations of Cd (0.05, 5, 10 and 50 microM) seemed to enhance O(2-) and NO generation in haemocytes of mussels. Moreover, O(2-) and NO generation in haemocytes exposed to Cd could be enhanced by its ability to induce reactive oxygen species (ROS) but respiratory burst activation as well. Inhibition of NO synthase with 10 microM l-NAME, significantly attenuated Cd ability to enhance O(2-) production and diminished NO generation, thus leading to the suggestion that Cd toxic effects, started at concentration of 50 muM, could enhance NADPH oxidase and NO synthase stimulation in haemocytes of mussels. NHE seems to play a regulatory role in the induction of either O(2-) or NO generation in haemocytes exposed to the metal, since its inhibition with the use of 10 microM EIPA significantly decrease both O(2-) and NO production. The involvement of NHE in the induction of O(2-) and NO generation, probably via PKC-mediated NADPH oxidase and NO synthase activation, is likely to be crucial to haemocytes exposed to heavy metals, such as Cd.
Journal of Hazardous Materials | 2012
Vasiliki Tsarpali; Maria Kamilari; Stefanos Dailianis
The present study investigates seasonal variations of leachate composition and its toxic potency on different species, such as the brine shrimp Artemia franciscana (formerly Artemia salina), the fairy shrimp Thamnocephalus platyurus, the estuarine rotifer Brachionus plicatilis and the microalgal flagellate Dunaliella tertiolecta. In specific, leachate regularly collected from the municipal landfill site of Aigeira (Peloponissos, Greece) during the year 2011, showed significant alterations of almost all its physicochemical parameters with time. Further analysis showed that seasonal alterations of leachate composition are related with the amount of rainfall obtained throughout the year. In fact, rainfall-related parameters, such as conductivity (Cond), nitrates (NO(3)(-)), total nitrogen (TN), ammonium (NH(4)-N), total dissolved solids (TDS) and the BOD(5)/NH(4)-N ratio could merely reflect the leachate strength and toxicity, as verified by the significant correlations occurred among each of them with the toxic endpoints, 24 h LC(50) and/or 72 h IC(50), obtained in all species tested. According to the result of the present study, it could be suggested that the aforementioned leachate parameters could be used independently, or in combination as a low-cost effective tools for estimating leachate strength and toxic potency, at least in the case of semi-arid areas such as the most of the Mediterranean countries.
The Journal of Experimental Biology | 2004
Stefanos Dailianis; Martha Kaloyianni
SUMMARY The present study investigates the transduction pathway mediated by cadmium in isolated digestive gland cells of mussel Mytilus galloprovincialis. The effects of cadmium treatment on a key glycolytic enzyme, pyruvate kinase (PK), and on Na+/H+ exchanger activity were examined. Cadmium (50 μmol l–1) caused a significant elevation of intracellular pH (pHi) and a rise (176%) of Na influx relative to control values. The amiloride analogue, EIPA (20 nmol l–1), a Na+/H+ exchanger blocker, together with cadmium, significantly reduced the effect of treatment by cadmium alone on both Na+ influx and pHi. In addition, PK activity was significantly increased after treatment with cadmium. PK activity was inhibited after treatment of cells with amiloride or EIPA together with cadmium. Moreover, phorbol-ester (PMA), a potent activator of protein kinase C (PKC), caused a significant rise in both pHi and PK activity, while staurosporine or calphostin C reversed both events. Adrenaline, isoprenaline and phenylephrine alone or together with cadmium also significantly increased the pHi and PK activity of isolated digestive gland cells. The latter effectors in combination with cadmium showed a synergistic effect on pHi and PK. These responses seem to be blocked by propranolol, metoprolol and prazosin. Our findings suggest a hormone-like effect of cadmium on digestive gland cells. The signal transduction pathway induced by cadmium involves the stimulation of PK, PKC and Na+/H+ exchanger in isolated digestive gland cells of Mytilus galloprovincialis.
The Journal of Experimental Biology | 2009
Stefanos Dailianis; Efterpi Patetsini; Martha Kaloyianni
SUMMARY This study investigated the role of Na+/H+ exchanger (NHE) and signalling molecules, such as cAMP, PKC, PI 3-kinase, and immune defence enzymes, NADPH oxidase and nitric oxide synthase, in the induction of protein glutathionylation and carbonylation in cadmium-treated haemocytes of mussel Mytilus galloprovincialis. Glutathionylation was detected by western blot analysis and showed actin as its main target. A significant increase of both actin glutathionylation and protein carbonylation, were observed in haemocytes exposed to micromolar concentration of cadmium chloride (5 μmol l–1). Cadmium seems to cause actin polymerization that may lead to its increased glutathionylation, probably to protect it from cadmium-induced oxidative stress. It is therefore possible that polymerization of actin plays a signalling role in the induction of both glutathionylation and carbonylation processes. NHE seems to play a regulatory role in the induction of oxidative damage and actin glutathionylation, since its inhibition by 2 μmol l–1 cariporide, significantly diminished cadmium effects in each case. Similarly, attenuation of cadmium effects were observed in cells pre-treated with either 11 μmol l–1 GF-109203X, a potent inhibitor of PKC, 50 nmol l–1 wortmannin, an inhibitor of PI 3-kinase, 0.01 mmol l–1 forskolin, an adenylyl cyclase activator, 10 μmol l–1 DPI, a NADPH oxidase inhibitor, or 10 μmol l–1 L-NAME, a nitric oxide synthase inhibitor, suggesting a possible role of PKC, PI 3-kinase and cAMP, as well as NADPH oxidase and nitric oxide synthase in the enhancement of cadmium effects on both actin glutathionylation and protein carbonylation.
Aquatic Toxicology | 2012
Vasiliki Tsarpali; Stefanos Dailianis
The present study investigates the harmful impacts of landfill leachate release and/or disposal into the marine environment, as well as its ability to induce lethal and pre-pathological alterations in marine organisms, such as the mussel Mytilus galloprovincialis. In specific, mortality test (96 h), performed first in order to estimate leachate lethal endpoints, showed increased levels of mussel mortality after exposure to leachate higher than 0.5%, v/v (96 h LC(50)=0.526%, v/v), while the exposure to 0.01 and 0.1% (v/v) of leachate showed negligible levels of mortality (96 h LC(10)=0.167%, v/v). Furthermore, the estimation of lysosomal membrane integrity in hemocytes of exposed mussels (Neutral Red Retention Time assay) showed increased levels of lysosomal destabilization in cells of mussels exposed to sub-lethal concentrations of leachate (0.01, 0.1 and 0.5%, v/v) for 4 days. In order to exclude parameters, such as mussel mortality and cell death, which could interfere with the obtained results, leachate at final concentrations of 0.01 and 0.1% (v/v) were finally used for the estimation of a battery of stress indices in target tissues of mussels, such as hemolymph, gills and digestive gland. According to the results, leachate-exposed mussels showed a significant inhibition of acetylcholinesterase activity, increased levels of nuclear abnormalities, as well as increased levels of metallothionein, superoxide anion and lipid peroxides (in terms of malondialdehyde equivalents) in each tissue tested. The results of the present study clearly indicate leachate-induced lethal effects as well as the ability of leachate to induce disturbances on different levels of organism function before mortality occurs.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010
Eleni Banakou; Stefanos Dailianis
This study investigated cadmium-induced oxidative and genotoxic effects, such as lipid peroxidation and disturbance of DNA integrity (DNA damage) in haemocytes of mussel Mytilus galloprovincialis and the possible involvement of Na+/H+ exchanger (NHE), and/or the main enzymes of respiratory burst, NADPH oxidase and nitric oxide (NO) synthase, in the induction of Cd toxic effects. In order to verify the role of either NHE, or NADPH oxidase and NO synthase in Cd-mediated toxicity, inhibitors such as ethyl-N-isopropyl-amiloride (EIPA), diphenyleneiodonium chloride (DPI) and NG-nitro-L-arginine methyl ester (L-NAME) were used in each case. Moreover, phorbol-myristate acetate (PMA), a well-known protein kinase C (PKC)-mediated NADPH oxidase and NO synthase stimulator, as well as hydrogen peroxide (H2O2), a well-known genotoxic agent, was also used for elucidating the modulation of signaling molecules within cells, thus leading to the induction of lipid peroxidation and DNA damage. The results of the present study showed that micromolar concentrations of Cd (0.05-50 microM) could enhance both lipid peroxidation and DNA damage, possible via a PKC-mediated signaling pathway with the involvement of NHE, thus leading to the induction of NADPH oxidase and NO synthase activity, since inhibition of either NHE, or NADPH oxidase and NO synthase activity, significantly attenuates Cd-induced toxic effects in each case.