Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefanos Leptidis is active.

Publication


Featured researches published by Stefanos Leptidis.


Nature Cell Biology | 2010

MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling

Paula A. da Costa Martins; Kanita Salic; Monika M. Gladka; Anne-Sophie Armand; Stefanos Leptidis; Hamid el Azzouzi; Arne Hansen; Christina J. Coenen-De Roo; Marti F.A. Bierhuizen; Roel van der Nagel; Joyce van Kuik; Roel A. de Weger; Alain de Bruin; Gianluigi Condorelli; Maria L. Arbonés; Thomas Eschenhagen; Leon J. De Windt

MicroRNAs (miRs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRs in myocardial disease processes. Here we show that miR-199b is a direct calcineurin/NFAT target gene that increases in expression in mouse and human heart failure, and targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a), constituting a pathogenic feed forward mechanism that affects calcineurin-responsive gene expression. Mutant mice overexpressing miR-199b, or haploinsufficient for Dyrk1a, are sensitized to calcineurin/NFAT signalling or pressure overload and show stress-induced cardiomegaly through reduced Dyrk1a expression. In vivo inhibition of miR-199b by a specific antagomir normalized Dyrk1a expression, reduced nuclear NFAT activity and caused marked inhibition and even reversal of hypertrophy and fibrosis in mouse models of heart failure. Our results reveal that microRNAs affect cardiac cellular signalling and gene expression, and implicate miR-199b as a therapeutic target in heart failure.


Cell Metabolism | 2013

The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation.

Hamid el Azzouzi; Stefanos Leptidis; Ellen Dirkx; Joris Hoeks; Bianca van Bree; Karl Brand; Elizabeth A. McClellan; Ella M. Poels; Judith C. Sluimer; Maarten M.G. van den Hoogenhof; Anne-Sophie Armand; Xiaoke Yin; Sarah R. Langley; Meriem Bourajjaj; Servé Olieslagers; Jaya Krishnan; Marc Vooijs; Hiroki Kurihara; Andrew Stubbs; Yigal M. Pinto; Wilhelm Krek; Manuel Mayr; Paula A. da Costa Martins; Patrick Schrauwen; Leon J. De Windt

Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199a∼214 and PPARδ. We demonstrate that under hemodynamic stress, cardiac hypoxia activates DNM3os, a noncoding transcript that harbors the microRNA cluster miR-199a∼214, which shares PPARδ as common target. To address the significance of miR-199a∼214 induction and concomitant PPARδ repression, we performed antagomir-based silencing of both microRNAs and subjected mice to biomechanical stress to induce heart failure. Remarkably, antagomir-treated animals displayed improved cardiac function and restored mitochondrial fatty acid oxidation. Taken together, our data suggest a mechanism whereby miR-199a∼214 actively represses cardiac PPARδ expression, facilitating a metabolic shift from predominant reliance on fatty acid utilization in the healthy myocardium toward increased reliance on glucose metabolism at the onset of heart failure.


Nature Cell Biology | 2013

Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure

Ellen Dirkx; Monika M. Gladka; Leonne E. Philippen; Anne-Sophie Armand; Virginie Kinet; Stefanos Leptidis; Hamid el Azzouzi; Kanita Salic; Meriem Bourajjaj; Gustavo J. Silva; Servé Olieslagers; Roel van der Nagel; Roel A. de Weger; Nicole Bitsch; Natasja Kisters; Sandrine Seyen; Yuka Morikawa; Christophe Chanoine; Stephane Heymans; Paul G.A. Volders; Thomas Thum; Stefanie Dimmeler; Peter Cserjesi; Thomas Eschenhagen; Paula A. da Costa Martins; Leon J. De Windt

Although aberrant reactivation of embryonic gene programs is intricately linked to pathological heart disease, the transcription factors driving these gene programs remain ill-defined. Here we report that increased calcineurin/Nfat signalling and decreased miR-25 expression integrate to re-express the basic helix-loop-helix (bHLH) transcription factor dHAND (also known as Hand2) in the diseased human and mouse myocardium. In line, mutant mice overexpressing Hand2 in otherwise healthy heart muscle cells developed a phenotype of pathological hypertrophy. Conversely, conditional gene-targeted Hand2 mice demonstrated a marked resistance to pressure-overload-induced hypertrophy, fibrosis, ventricular dysfunction and induction of a fetal gene program. Furthermore, in vivo inhibition of miR-25 by a specific antagomir evoked spontaneous cardiac dysfunction and sensitized the murine myocardium to heart failure in a Hand2-dependent manner. Our results reveal that signalling cascades integrate with microRNAs to induce the expression of the bHLH transcription factor Hand2 in the postnatal mammalian myocardium with impact on embryonic gene programs in heart failure.


PLOS ONE | 2013

A Deep Sequencing Approach to Uncover the miRNOME in the Human Heart

Stefanos Leptidis; Hamid el Azzouzi; Sjoukje I. Lok; Roel A. de Weger; Serv Olieslagers; Natasja Kisters; Gustavo J. Silva; Stephane Heymans; Edwin Cuppen; Eugene Berezikov; Leon J. De Windt; Paula A. da Costa Martins

MicroRNAs (miRNAs) are a class of non-coding RNAs of ∼22 nucleotides in length, and constitute a novel class of gene regulators by imperfect base-pairing to the 3′UTR of protein encoding messenger RNAs. Growing evidence indicates that miRNAs are implicated in several pathological processes in myocardial disease. The past years, we have witnessed several profiling attempts using high-density oligonucleotide array-based approaches to identify the complete miRNA content (miRNOME) in the healthy and diseased mammalian heart. These efforts have demonstrated that the failing heart displays differential expression of several dozens of miRNAs. While the total number of experimentally validated human miRNAs is roughly two thousand, the number of expressed miRNAs in the human myocardium remains elusive. Our objective was to perform an unbiased assay to identify the miRNOME of the human heart, both under physiological and pathophysiological conditions. We used deep sequencing and bioinformatics to annotate and quantify microRNA expression in healthy and diseased human heart (heart failure secondary to hypertrophic or dilated cardiomyopathy). Our results indicate that the human heart expresses >800 miRNAs, the majority of which not being annotated nor described so far and some of which being unique to primate species. Furthermore, >250 miRNAs show differential and etiology-dependent expression in human dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM). The human cardiac miRNOME still possesses a large number of miRNAs that remain virtually unexplored. The current study provides a starting point for a more comprehensive understanding of the role of miRNAs in regulating human heart disease.


Cell Death and Disease | 2015

A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy

Morena d'Avenia; R Citro; M De Marco; Angelo Veronese; Alessandra Rosati; Rosa Visone; Stefanos Leptidis; Leonne E. Philippen; G Vitale; A Cavallo; Angelo Silverio; C Prota; P Gravina; A De Cola; Erminia Carletti; G Coppola; S Gallo; G Provenza; Eduardo Bossone; Federico Piscione; Michael Hahne; L. De Windt; Maria Caterina Turco; V De Laurenzi

Molecular mechanisms protecting cardiomyocytes from stress-induced death, including tension stress, are essential for cardiac physiology and defects in these protective mechanisms can result in pathological alterations. Bcl2-associated athanogene 3 (BAG3) is expressed in cardiomyocytes and is a component of the chaperone-assisted autophagy pathway, essential for homeostasis of mechanically altered cells. BAG3 ablation in mice results in a lethal cardiomyopathy soon after birth and mutations of this gene have been associated with different cardiomyopathies including stress-induced Takotsubo cardiomyopathy (TTC). The pathogenic mechanism leading to TTC has not been defined, but it has been suggested that the heart can be damaged by excessive epinephrine (epi) spillover in the absence of a protective mechanism. The aim of this study was to provide more evidence for a role of BAG3 in the pathogenesis of TTC. Therefore, we sequenced BAG3 gene in 70 TTC patients and in 81 healthy donors with the absence of evaluable cardiovascular disease. Mutations and polymorphisms detected in the BAG3 gene included a frequent nucleotide change g2252c in the BAG3 3′-untranslated region (3′-UTR) of Takotsubo patients (P<0.05), resulting in loss of binding of microRNA-371a-5p (miR-371a-5p) as evidenced by dual-luciferase reporter assays and argonaute RNA-induced silencing complex catalytic component 2/pull-down assays. Moreover, we describe a novel signaling pathway in cardiomyocytes that leads to BAG3 upregulation on exposure to epi through an ERK-dependent upregulation of miR-371a-5p. In conclusion, the presence of a g2252c polymorphism in the BAG3 3′-UTR determines loss of miR-371a-5p binding and results in an altered response to epi, potentially representing a new molecular mechanism that contributes to TTC pathogenesis.


Journal of Biological Chemistry | 2011

Peroxisome Proliferator-activated Receptor (PPAR) Gene Profiling Uncovers Insulin-like Growth Factor-1 as a PPARα Target Gene in Cardioprotection

Hamid el Azzouzi; Stefanos Leptidis; Meriem Bourajjaj; Anne-Sophie Armand; Roel van der Nagel; Marc van Bilsen; Paula A. da Costa Martins; Leon J. De Windt

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-activated transcription factors and consist of the three isoforms, PPARα, PPARβ/δ, and PPARγ. Considerable evidence indicates the importance of PPARs in cardiovascular lipid homeostasis and diabetes, yet the isoform-dependent cardiac target genes remain unknown. Here, we constructed murine ventricular clones allowing stable expression of siRNAs to achieve specifically knockdown for each of the PPAR isoforms. By combining gene profiling and computational peroxisome proliferator response element analysis following PPAR isoform activation in normal versus PPAR isoform-deficient cardiomyocyte-like cells, we have, for the first time, determined PPAR isoform-specific endogenous target genes in the heart. Electromobility shift and chromatin immunoprecipitation assays demonstrated the existence of an evolutionary conserved peroxisome proliferator response element consensus-binding site in an insulin-like growth factor-1 (igf-1) enhancer. In line, Wy-14643-mediated PPARα activation in the wild-type mouse heart resulted in up-regulation of igf-1 transcript abundance and provided protection against cardiomyocyte apoptosis following ischemia/reperfusion or biomechanical stress. Taken together, these data confirm igf-1 as an in vivo target of PPARα and the involvement of a PPARα/IGF-1 signaling pathway in the protection of cardiomyocytes under ischemic and hemodynamic loading conditions.


PLOS ONE | 2012

MEK1 inhibits cardiac PPARα activity by direct interaction and prevents its nuclear localization.

Hamid el Azzouzi; Stefanos Leptidis; Meriem Bourajjaj; Marc van Bilsen; Paula A. da Costa Martins; Leon J. De Windt

Background The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of PPARα in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARα signaling. Methodology/Principal Finding Using co-immunoprecipitation and immunofluorescence approaches we show a complex formation of PPARα with MEK1 and not with ERK1/2. Binding of PPARα to MEK1 is mediated via a LXXLL motif and results in translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARα. Mice subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with PPARα, subsequently resulting in reduced PPARα activity. Inhibition of MEK1, using U0126, blunted this effect. Conclusion Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARα transcriptional activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase ERK1/2, through a mechanism involving direct binding to PPARα and subsequent stimulation of PPARα export from the nucleus.


Circulation | 2014

Nuclear Calcium Transients Hermes Propylaios in the Heart

Paula A. da Costa Martins; Stefanos Leptidis; Leon J. De Windt

> O cunning guide, son of Maia, I fear that you might steal my lyre and my curved bow. For you hold the office from Zeus to establish deeds of exchange among men throughout the fertile earth. But if you would suffer to swear the great oath of the gods for me, either by nodding your head or by the mighty water of the Styx, you would accomplish everything pleasing to my own heart. > > —Homeric Hymnes1 In Greek Mythology, Hermes (Greek: ρμ ς), son of Zeus and the pleiad Maia, was perhaps the most complex deity of transitions and boundaries, contemporarily simplified as a messenger god that moved freely between the higher worlds at Olympus, our world with human mortals, and the grim underworld of the deceased. As the second youngest of the Olympian gods and symbolizing Hermes’ function as divine messenger, he is often sculptured as a youngster with winged sandals and winged cap and holding his symbolic herald’s staff, the Greek kerykeion , consisting of 2 snakes wrapped around a winged staff. Hermes received multiple epithets including Propylaios , freely translated as “at the gateway,” reflecting a deeper philosophical significance of Hermes. Article see p 244 As with all imaginary Greek deities, Hermes’ actions do not describe a uniformly positive character. Tales rather tell of a complex, 3-layered personality, ranging from a truly uplifting spirit, as would be expected from his divine roots, to a character with an innocent yet cunning nature, but at times he also displayed unexpected evil. With these 3 faces, Hermes likely symbolized how our Greek ancestors segmented the universe, consisting of a noble and divine upper world physically located at Mount Olympus; planet Earth with all its living creatures including mankind; and finally, the dark side of disease, suffering, and death, represented by …


Trends in Endocrinology and Metabolism | 2015

HypoxamiRs : Regulators of cardiac hypoxia and energy metabolism

Hamid el Azzouzi; Stefanos Leptidis; Pieter A. Doevendans; Leon J. De Windt


Current Drug Targets | 2010

MicroRNA regulation in cardiovascular disease.

P.A. da Costa Martins; Stefanos Leptidis; Kanita Salic; L. De Windt

Collaboration


Dive into the Stefanos Leptidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge