Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Abel is active.

Publication


Featured researches published by Steffen Abel.


Plant Physiology | 1996

Early Genes and Auxin Action

Steffen Abel; Athanasios Theologis

The plant hormone IAA (or auxin) is central to the control of plant growth and development. Processes governed by auxin in concert with other plant growth regulators include development of vascular tissues, formation of lateral and adventitious roots, control of apical dominance, and tropic responses (Went and Thimann, 1937). At the level of cellular physiology, auxin profoundly affects turgor, elongation, division, and cell differentiation, the major driving and shaping forces in morphogenesis and oncogenesis. The molecular mechanisms of auxin action are still unknown, although it is now well established that auxin modulates membrane function and gene expression (for review, see Napier and Venis, 1995). These biochemical changes, in turn, most likely affect fundamental aspects of plant morphology and physiology. However, a causal relationship between auxin-mediated alterations in gene expression or membrane function and a particular growth process has not yet been demonstrated. Despite its critical role in plant development and the immense volume of studies on the diverse auxin effects, understanding of the molecular mechanisms of auxin action remains one of the major challenges in plant biology. The signal transduction cascades leading from auxin perception to altered gene expression or membrane function hold the key in our attempts to elucidate the primary mechanism(s) of auxin action. An array of experimental strategies has been mounted to investigate auxin signaling pathways. The combination of biochemical, molecular, and genetic approaches will allow for significant new insights into how the hormone works in molecular terms (Fig. 1). One strategy employs genetics and reverse genetics to construct transgenic plants with perturbations in auxin homeostasis and to screen for mutants with defects in auxinrelated physiology. Transgenic plants expressing altered hormone levels have already resolved some longstanding questions in plant physiology. Mutant plants defective in auxin responses will rejuvenate and stimulate research by identifying novel genes involved in hormone perception, signal transduction, and physiological responses (for review, see Hobbie and Estelle, 1994; Klee and Romano, 1994). The first significant result (to our knowledge) of this approach was the cloning of the AXR1 gene, which encodes a protein related to the ubiquitin-activating enzyme El (Leyser et al., 1993). Although AXRl is probably not a functional El homolog, it is nonetheless an exquisite example of the potential of molecular genetics to connect the unexpected. The biochemical strategy is based on the identification of auxin receptors and subsequent isolation of interacting components. The search for auxin receptors has led to the discovery of a number of soluble and membranebound proteins that bind auxin with moderate but physiologically relevant affinity. Their functional role in auxin signaling is still unclear and is a major target of current research (for review, see Jones, 1994; Napier and Venis, 1995). Auxin-regulated genes provide yet another source of molecular tools to dissect auxin action. The hormone modulates gene expression in a wide variety of plant tissues and cell types over a broad period of time (for review, see Guilfoyle, 1986; Theologis, 1986). However, early genes selectively induced as a primary response to auxin and prior to the initiation of cell growth are likely candidates to play a pivotal role in mediating growth-stimulating effects of the hormone. This review focuses on recent advances in our knowledge on early auxin-inducible gene expression and possible functions of the polypeptides encoded.


Proceedings of the National Academy of Sciences of the United States of America | 2009

ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability

Carla Ticconi; Rocco D. Lucero; Siriwat Sakhonwasee; Aaron W. Adamson; Audrey Creff; Laurent Nussaume; Thierry Desnos; Steffen Abel

Inadequate availability of inorganic phosphate (Pi) in the rhizosphere is a common challenge to plants, which activate metabolic and developmental responses to maximize Pi acquisition. The sensory mechanisms that monitor environmental Pi status and regulate root growth via altered meristem activity are unknown. Here, we show that phosphate deficiency response 2 (PDR2) encodes the single P5-type ATPase of Arabidopsis thaliana. PDR2 functions in the endoplasmic reticulum (ER) and is required for proper expression of scarecrow (SCR), a key regulator of root patterning, and for stem-cell maintenance in Pi-deprived roots. We further show that the multicopper oxidase encoded by low phosphate root 1 (LPR1) is targeted to the ER and that LPR1 and PDR2 interact genetically. Because the expression domains of both genes overlap in the stem-cell niche and distal root meristem, we propose that PDR2 and LPR1 function together in an ER-resident pathway that adjusts root meristem activity to external Pi. Our data indicate that the Pi-conditional root phenotype of pdr2 is not caused by increased Fe availability in low Pi; however, Fe homeostasis modifies the developmental response of root meristems to Pi availability.


Nutrition and Cancer | 2003

Effect of Dietary Constituents With Chemopreventive Potential on Adduct Formation of a Low Dose of the Heterocyclic Amines PhIP and IQ and Phase II Hepatic Enzymes

Karen H. Dingley; Esther A. Ubick; Marina L. Chiarappa-Zucca; Susan Nowell; Steffen Abel; Susan E. Ebeler; Alyson E. Mitchell; Stephanie A. Burns; Francene M. Steinberg; Andrew J. Clifford

We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C] PhIPand [3H] IQand utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQadducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C] PhIPand [3H] IQin rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver.With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.


Plant Physiology | 2002

FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase

Marta J. Laskowski; Kate Dreher; Mary Gehring; Steffen Abel; Arminda L. Gensler; Ian M. Sussex

FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating thatFQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated fromEscherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathioneS-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.


Planta | 2000

Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana.

Donna L. Chen; Carla Andréa Delatorre; Aleida Bakker; Steffen Abel

Abstract. Plants have evolved elaborate metabolic and developmental adaptations to low phosphorus availability. Biochemical responses to phosphate limitation include increased production and secretion of phosphate-acquisition proteins such as nucleases, acid phosphatases, and high-affinity phosphate transporters. However, the signal transduction pathways that sense phosphate availability and integrate the phosphate-starvation response in plants are unknown. We have devised a screen for conditional mutants in Arabidopsis thaliana (L.) Heynh. to dissect signaling of phosphate limitation. Our genetic screen is based on the facultative ability of wild-type Arabidopsis plants to metabolize exogenous DNA when inorganic phosphate is limiting. After screening 50,000 M2 seedlings, we isolated 22 confirmed mutant lines that showed severely impaired growth on medium containing DNA as the only source of phosphorus, but which recovered on medium containing soluble inorganic phosphate. Characterization of nine such mutant lines demonstrated an inability to utilize either DNA or RNA. One mutant line, psr1 (phosphate starvation response), had significantly reduced activities of phosphate-starvation-inducible isoforms of ribonuclease and acid phosphatase under phosphate-limiting conditions. The data suggest that a subset of the selected mutations impairs the expression of more than one phosphate-starvation-inducible enzyme required for utilization of exogenous nucleic acids, and may thus affect regulatory components of a Pi starvation response pathway in higher plants.


Plant Molecular Biology | 1995

cDNA structure and regulatory properties of a family of starvation-induced ribonucleases from tomato

Margret Köck; Andreas Löffler; Steffen Abel; Konrad Glund

In previous work we have determined the primary structure of two of the five ribonucleases which are induced by phosphate starvation in cultured tomato cells. Here, we present the isolation and characterization of the cDNAs for the extracellular ribonuclease LE and the intracellular, but extravacuolar ribonuclease LX. Structural analysis of these cDNAs together with partial protein-sequencing of vacuolar ribonucleases LV1, LV2 and LV3 revealed a family of very similar ribonucleases. From these data we assume identity between ribonucleases LE and LV3 for which the targeting mechanism has to be shown. Furthermore, RNase LV1 and RNase LV2 might be posttranslational processing products of RNase LX which travel to the vacuoles after splitting off the putative ER retention signal present at RNase LX. Additionally, we show by northern blot analysis that phosphate starvation in plant cells leads to an increase in the steady-state level of this type of enzymes revealing close similarities of the plant response to a limited supply of inorganic phosphate with the PHO regulation in bacteria and fungi.


Developmental Cell | 2015

Iron-Dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability

Jens Müller; Theresa Toev; Marcus Heisters; Janine Teller; Katie L. Moore; Gerd Hause; Dhurvas Chandrasekaran Dinesh; Katharina Bürstenbinder; Steffen Abel

Plant root development is informed by numerous edaphic cues. Phosphate (Pi) availability impacts the root system architecture by adjusting meristem activity. However, the sensory mechanisms monitoring external Pi status are elusive. Two functionally interacting Arabidopsis genes, LPR1 (ferroxidase) and PDR2 (P5-type ATPase), are key players in root Pi sensing, which is modified by iron (Fe) availability. We show that the LPR1-PDR2 module facilitates, upon Pi limitation, cell-specific apoplastic Fe and callose deposition in the meristem and elongation zone of primary roots. Expression of cell-wall-targeted LPR1 determines the sites of Fe accumulation as well as callose production, which interferes with symplastic communication in the stem cell niche, as demonstrated by impaired SHORT-ROOT movement. Antagonistic interactions of Pi and Fe availability control primary root growth via meristem-specific callose formation, likely triggered by LPR1-dependent redox signaling. Our results link callose-regulated cell-to-cell signaling in root meristems to the perception of an abiotic cue.


BMC Evolutionary Biology | 2005

Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa

Steffen Abel; Tatyana Savchenko; Maggie Levy

BackgroundCalcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice.ResultsWe identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3) and frequency of serine residues (~11%). We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants.ConclusionComparative phylogenetic analyses indicate that the major IQD gene lineages originated before the monocot-eudicot divergence. The extant IQD loci in Arabidopsis primarily resulted from segmental duplication and reflect preferential retention of paralogous genes, which is characteristic for proteins with regulatory functions. Interaction of IQD1 and IQD20 with calmodulin and the presence of predicted calmodulin binding sites in all IQD family members suggest that IQD proteins are a new class of calmodulin targets. The basic isoelectric point of IQD proteins and their frequently predicted nuclear localization suggest that IQD proteins link calcium signaling pathways to the regulation of gene expression. Our comparative genomics analysis of IQD genes and encoded proteins in two model plant species provides the first step towards the functional dissection of this emerging family of putative calmodulin targets.


Journal of Biological Chemistry | 2013

Arabidopsis Calmodulin-binding Protein IQ67-Domain 1 Localizes to Microtubules and Interacts with Kinesin Light Chain-related Protein-1

Katharina Bürstenbinder; Tatyana Savchenko; Jens Müller; Aaron W. Adamson; Gina Stamm; Raymond W. Kwong; Brandon J. Zipp; Dhurvas Chandrasekaran Dinesh; Steffen Abel

Background: Plant-specific IQD genes encode putative CaM targets of unknown functions. Results: IQD1 interacts with KLCR1, binds to Arabidopsis CaM/CMLs, and localizes to microtubules. Conclusion: IQD1 may act as a scaffold protein recruiting cargo to kinesin motors for directional transport along microtubules. Significance: This work provides novel insight into IQD function and a framework to study plant kinesin regulation. Calcium (Ca2+) is a key second messenger in eukaryotes and regulates diverse cellular processes, most notably via calmodulin (CaM). In Arabidopsis thaliana, IQD1 (IQ67 domain 1) is the founding member of the IQD family of putative CaM targets. The 33 predicted IQD proteins share a conserved domain of 67 amino acids that is characterized by a unique arrangement of multiple CaM recruitment motifs, including so-called IQ motifs. Whereas IQD1 has been implicated in the regulation of defense metabolism, the biochemical functions of IQD proteins remain to be elucidated. In this study we show that IQD1 binds to multiple Arabidopsis CaM and CaM-like (CML) proteins in vitro and in yeast two-hybrid interaction assays. CaM overlay assays revealed moderate affinity of IQD1 to CaM2 (Kd ∼ 0.6 μm). Deletion mapping of IQD1 demonstrated the importance of the IQ67 domain for CaM2 binding in vitro, which is corroborated by interaction of the shortest IQD member, IQD20, with Arabidopsis CaM/CMLs in yeast. A genetic screen of a cDNA library identified Arabidopsis kinesin light chain-related protein-1 (KLCR1) as an IQD1 interactor. The subcellular localization of GFP-tagged IQD1 proteins to microtubules and the cell nucleus in transiently and stably transformed plant tissues (tobacco leaves and Arabidopsis seedlings) suggests direct interaction of IQD1 and KLCR1 in planta that is supported by GFP∼IQD1-dependent recruitment of RFP∼KLCR1 and RFP∼CaM2 to microtubules. Collectively, the prospect arises that IQD1 and related proteins provide Ca2+/CaM-regulated scaffolds for facilitating cellular transport of specific cargo along microtubular tracks via kinesin motor proteins.


Cold Spring Harbor Perspectives in Biology | 2010

Odyssey of Auxin

Steffen Abel; Athanasios Theologis

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.

Collaboration


Dive into the Steffen Abel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Ticconi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Andréa Delatorre

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge