Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Boch is active.

Publication


Featured researches published by Steffen Boch.


Nature | 2016

Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality

Santiago Soliveres; Fons van der Plas; Peter Manning; Daniel Prati; Martin M. Gossner; Swen C. Renner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Interannual variation in land-use intensity enhances grassland multidiversity

Eric Allan; Oliver Bossdorf; Carsten F. Dormann; Daniel Prati; Martin M. Gossner; Teja Tscharntke; Nico Blüthgen; Michaela Bellach; Klaus Birkhofer; Steffen Boch; Stefan Böhm; Carmen Börschig; Antonis Chatzinotas; Sabina Christ; Rolf Daniel; Tim Diekötter; Christiane Fischer; Thomas Friedl; Karin Glaser; Christine Hallmann; Ladislav Hodač; Norbert Hölzel; Kirsten Jung; Alexandra-Maria Klein; Valentin H. Klaus; Till Kleinebecker; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller

Significance Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a single or few groups of organisms and have not considered temporal variation in LUI. Therefore, we examined total ecosystem biodiversity in grasslands varying in LUI with a newly developed index called multidiversity, which integrates the species richness of 49 different organism groups ranging from bacteria to birds. Multidiversity declined strongly with increasing LUI, but changing LUI across years increased multidiversity, particularly of rarer species. We conclude that encouraging farmers to change the intensity of their land use over time could be an important strategy to maintain high biodiversity in grasslands. Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.


Nature | 2016

Land-use intensification causes multitrophic homogenization of grassland communities.

Martin M. Gossner; Thomas M. Lewinsohn; Tiemo Kahl; Fabrice Grassein; Steffen Boch; Daniel Prati; Klaus Birkhofer; Swen C. Renner; Johannes Sikorski; Tesfaye Wubet; Hartmut Arndt; Vanessa Baumgartner; Stefan Blaser; Nico Blüthgen; Carmen Börschig; François Buscot; Tim Diekötter; Leonardo R. Jorge; Kirsten Jung; Alexander C. Keyel; Alexandra-Maria Klein; Sandra Klemmer; Jochen Krauss; Markus Lange; Jörg Müller; Jörg Overmann; Esther Pašalić; Caterina Penone; David J. Perović; Oliver Purschke

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


PLOS ONE | 2012

Differences in Soil Fungal Communities between European Beech (Fagus sylvatica L.) Dominated Forests Are Related to Soil and Understory Vegetation

Tesfaye Wubet; Sabina Christ; Ingo Schöning; Steffen Boch; Melanie Gawlich; Beatrix Schnabel; Markus Fischer; François Buscot

Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.


Philosophical Transactions of the Royal Society B | 2016

Locally rare species influence grassland ecosystem multifunctionality

Santiago Soliveres; Peter Manning; Daniel Prati; Martin M. Gossner; Fabian Alt; Hartmut Arndt; Vanessa Baumgartner; Julia Binkenstein; Klaus Birkhofer; Stefan Blaser; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; François Buscot; Tim Diekötter; Johannes Heinze; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Sandra Klemmer; Jochen Krauss; Markus Lange; E. Kathryn Morris; Jörg Müller; Yvonne Oelmann; Jörg Overmann; Esther Pašalić

Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.


PLOS ONE | 2013

Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity

Steffen Boch; Daniel Prati; Dominik Hessenmöller; Ernst-Detlef Schulze; Markus Fischer

Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m2 comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species instead of coniferous plantations, and (5) increasing the amount of deadwood in forests.


PLOS ONE | 2011

Lichen Endozoochory by Snails

Steffen Boch; Daniel Prati; Silke Werth; Jörg Rüetschi; Markus Fischer

Endozoochory plays a prominent role for the dispersal of seed plants. However, for most other plant taxa it is not known whether this mode of dispersal occurs at all. Among those other taxa, lichens as symbiotic associations of algae and fungi are peculiar as their successful dispersal requires movement of propagules that leaves the symbiosis functional. However, the potential for endozoochorous dispersal of lichen fragments has been completely overlooked. We fed sterile thalli of two foliose lichen species (Lobaria pulmonaria and Physcia adscendens) differing in habitat and air-quality requirements to nine snail species common in temperate Europe. We demonstrated morphologically that L. pulmonaria regenerated from 29.0% of all 379 fecal pellets, whereas P. adscendens regenerated from 40.9% of all 433 fecal pellets, showing that lichen fragments survived gut passage of all snail species. Moreover, molecular analysis of regenerated lichens confirmed the species identity for a subset of samples. Regeneration rates were higher for the generalist lichen species P. adscendens than for the specialist lichen species L. pulmonaria. Furthermore, lichen regeneration rates varied among snail species with higher rates after gut passage of heavier snail species. We suggest that gastropods generally grazing on lichen communities are important, but so far completely overlooked, as vectors for lichen dispersal. This opens new ecological perspectives and questions the traditional view of an entirely antagonistic relationship between gastropods and lichens.


Ecology | 2015

Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa

Peter Manning; Martin M. Gossner; Oliver Bossdorf; Eric Allan; Yuanye Zhang; Daniel Prati; Nico Blüthgen; Steffen Boch; Stefan Böhm; Carmen Börschig; Norbert Hölzel; Kirsten Jung; Valentin H. Klaus; Alexandra-Maria Klein; Till Kleinebecker; Jochen Krauss; Markus Lange; Jörg Müller; Esther Pašalić; Stephanie A. Socher; Marco Tschapka; Manfred Türke; Christiane N. Weiner; Michael Werner; Sonja Gockel; Andreas Hemp; Swen C. Renner; Konstans Wells; François Buscot; Elisabeth K. V. Kalko

Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations (35% decrease in r and 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hy...


PLOS ONE | 2013

Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil

Annabel Meyer; Andreas Focks; Viviane Radl; Daniel Keil; Gerhard Welzl; Ingo Schöning; Steffen Boch; Sven Marhan; Ellen Kandeler; Michael Schloter

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.


Nature Communications | 2016

Land use imperils plant and animal community stability through changes in asynchrony rather than diversity

Nico Blüthgen; Nadja K. Simons; Kirsten Jung; Daniel Prati; Swen C. Renner; Steffen Boch; Markus Fischer; Norbert Hölzel; Valentin H. Klaus; Till Kleinebecker; Marco Tschapka; Wolfgang W. Weisser; Martin M. Gossner

Human land use may detrimentally affect biodiversity, yet long-term stability of species communities is vital for maintaining ecosystem functioning. Community stability can be achieved by higher species diversity (portfolio effect), higher asynchrony across species (insurance hypothesis) and higher abundance of populations. However, the relative importance of these stabilizing pathways and whether they interact with land use in real-world ecosystems is unknown. We monitored inter-annual fluctuations of 2,671 plant, arthropod, bird and bat species in 300 sites from three regions. Arthropods show 2.0-fold and birds 3.7-fold higher community fluctuations in grasslands than in forests, suggesting a negative impact of forest conversion. Land-use intensity in forests has a negative net impact on stability of bats and in grasslands on birds. Our findings demonstrate that asynchrony across species—much more than species diversity alone—is the main driver of variation in stability across sites and requires more attention in sustainable management.

Collaboration


Dive into the Steffen Boch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Müller

Bavarian Forest National Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge