Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Fischer is active.

Publication


Featured researches published by Steffen Fischer.


Organic and Medicinal Chemistry Letters | 2012

Cannabinoid receptor type 2 (CB2)-selective N-aryl-oxadiazolyl-propionamides: synthesis, radiolabelling, molecular modelling and biological evaluation

Thomas Rühl; Winnie Deuther-Conrad; Steffen Fischer; Robert Günther; Lothar Hennig; Harald Krautscheid; Peter Brust

Background The endocannabinoid system is involved in many physiological and pathological processes. Two receptors (cannabinoid receptor type 1 (CB1) and type 2 (CB2)) are known so far. Many unwanted psychotic side effects of inhibitors of this system can be addressed to the interaction with CB1. While CB1 is one of the most abundant neuroreceptors, CB2 is expressed in the brain only at very low levels. Thus, highly potent and selective compounds for CB2 are desired. N-aryl-((hetero)aromatic)-oxadiazolyl-propionamides represent a promising class of such selective ligands for the human CB2. Here, a library of various derivatives is studied for suitable routes for labelling with 18F. Such 18F-labelled compounds can then be employed as CB2-selective radiotracers for molecular imaging studies employing positron emission tomography (PET). Results By varying the N-arylamide substructure, we explored the binding pocket of the human CB2 receptor and identified 9-ethyl-9H-carbazole amide as the group with optimal size. Radioligand replacement experiments revealed that the modification of the (hetero)aromatic moiety in 3-position of the 1,2,4-oxadiazoles shows only moderate impact on affinity to CB2 but high impact on selectivity towards CB2 with respect to CB1. Further, we could show by autoradiography studies that the most promising compounds bind selectively on CB2 receptors in mouse spleen tissue. Molecular docking studies based on a novel three-dimensional structural model of the human CB2 receptor in its activated form indicate that the compounds bind with the N-arylamide substructure in the binding pocket. 18F labelling at the (hetero)aromatic moiety at the opposite site of the compounds via radiochemistry was carried out. Conclusions The synthesized CB2-selective compounds have high affinity towards CB2 and good selectivity against CB1. The introduction of labelling groups at the (hetero)aromatic moiety shows only moderate impact on CB2 affinity, indicating the introduction of potential labelling groups at this position as a promising approach to develop CB2-selective ligands suitable for molecular imaging with PET. The high affinity for human CB2 and selectivity against human CB1 of the herein presented compounds renders them as suitable candidates for molecular imaging studies.


Bioorganic & Medicinal Chemistry | 2013

Radiosynthesis and first evaluation in mice of [18F]NS14490 for molecular imaging of α7 nicotinic acetylcholine receptors

Sven Rötering; Matthias Scheunemann; Steffen Fischer; Achim Hiller; Dan Peters; Winnie Deuther-Conrad; Peter Brust

[(18)F]NS14490, a new potential radiotracer for neuroimaging of α7 nicotinic acetylcholine receptors (α7 nAChRs), was synthesized and evaluated in vitro and in vivo. Radioligand binding studies using [(3)H]methyllycaconitine and NS14490 as competitor showed a good target affinity (K(i,α7) = 2.5 nM) and a high selectivity towards other nAChRs. Radiosynthesis of [(18)F]NS14490 was performed by two different labelling procedures: a two-step synthesis using a prosthetic group, which led to 7% labelling yield, and the convenient direct nucleophilic substitution of the corresponding tosylate precursor, which resulted in 70% labelling yield. After optimisation of the isolation, purification and formulation process, biodistribution studies were performed in CD-1 mice. The brain uptake of [(18)F]NS14490 was comparably low (0.16% ID g(-1) wet weight at 5 min p.i.). The radiotracer showed a high metabolic stability in plasma and brain. Also, the target specificity was proven by pre-administration of a highly affine α7 ligand providing a rationale basis for further in vivo evaluation.


Nuclear Medicine and Biology | 2009

Neuroimaging of the vesicular acetylcholine transporter by a novel 4-[18F]fluoro-benzoyl derivative of 7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4]oxazines

Dietlind Sorger; Matthias Scheunemann; Johnny Vercouillie; Udo Großmann; Steffen Fischer; Achim Hiller; Barbara Wenzel; Ali Roghani; Reinhard Schliebs; Jörg Steinbach; Peter Brust; Osama Sabri

Phenylpiperidinyl-octahydro-benzo[1,4]oxazines represent a new class of conformationally restrained vesamicol analogues. Derived from this morpholine-fused vesamicol structure, a new fluorine-18-labeled 4-fluorobenzoyl derivative ([(18)F]FBMV) was synthesized with an average specific activity of 75 GBq/micromol and a radiochemical purity of 99%. The radiolabeling method included an exchange reaction of a 4-nitro group of the precursor by fluorine-18, a reduction procedure to eliminate excess of the nitro compound, followed by a high-performance liquid chromatography purification. [(18)F]FBMV demonstrates (i) a moderate lipophilic character with a logD(pH7.0) 1.8+/-0.10; (ii) a considerable binding affinity to the vesicular acetylcholine transporter (VAChT) (K(i)=27.5 nM), as determined using PC12 cells transfected with a VAChT cDNA, and a low affinity to sigma(1,2) receptors (K(i) >3000 nM); (iii) a good uptake into the rat and pig brains; (iv) a typical accumulation in the VAChT-containing brain regions; and (v) an approximately 20% reduction in cortical tracer binding after a specific cholinergic lesion using 192IgG-saporin. [(18)F]FBMV exhibits another PET marker within the group of vesamicol derivatives that demonstrates potentials in imaging brain cholinergic deficits, while its usefulness in clinical practice must await further investigation.


Nuclear Medicine and Biology | 2008

A new 18F-labeled fluoroacetylmorpholino derivative of vesamicol for neuroimaging of the vesicular acetylcholine transporter

Dietlind Sorger; Matthias Scheunemann; Udo Großmann; Steffen Fischer; Johnny Vercouille; Achim Hiller; Barbara Wenzel; Ali Roghani; Reinhard Schliebs; Peter Brust; Osama Sabri; Jörg Steinbach

With the aim of producing selective radiotracers for in vivo imaging of the vesicular acetylcholine transporter (VAChT) using positron mission tomography (PET), here, we report synthesis and analysis of a new class of conformationally constrained vesamicol analogues with moderate lipophilicity. The sequential ring opening on trans-1,4-cyclohexadiene dioxide enabled an approach to synthesize 6-arylpiperidino-octahydrobenzo[1,4]oxazine-7-ols [morpholino vesamicols]. The radiosynthesis of the [18F]fluoroacetyl-substituted derivative ([18F]FAMV) was achieved starting from a corresponding bromo precursor [2-Bromo-1-[7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4]oxazin-4-yl]-ethanone] and using a modified commercial computer-controlled module system with a radiochemical yield of 27+/-4%, a high radiochemical purity (99%) and a specific activity of 35 GBq/micromol. In competitive binding assays using a PC12 cell line overexpressing VAChT and [3H]-(-) vesamicol, 2-fluoro-1-[7-hydroxy-6-(4-phenyl-piperidin-1-yl)-octahydro-benzo[1,4]oxazin-4-yl]-ethanone (FAMV) demonstrated a high selectivity for binding to VAChT (K(i): 39.9+/-5.9 nM) when compared to its binding to sigma 1/2 receptors (Ki>1500 nM). The compound showed a moderate lipophilicity (logD (pH 7)=1.9) and a plasma protein binding of 49%. The brain uptake of [18F]FAMV was about 0.1% injected dose per gram at 5 min after injection and decreased continuously with time. Notably, an increasing accumulation of radioactivity in the lateral brain ventricles was observed. After 1 h, the accumulation of [18F]FAMV, expressed as ratio to the cerebellum, was 4.5 for the striatum, 2.0 for the cortical and 1.5 for the hippocampal regions, measured on brain slices using ex vivo autoradiography. At the present time, 75% of [18F]FAMV in the plasma was shown to be metabolized to various hydrophilic compounds, as detected by high-performance liquid chromatography. The degradation of [18F]FAMV was also detected in brain extracts as early as 15 min post injection (p.i.) and increased to 50% at 1 h postinjection. In conclusion, although the chemical properties of [18F]FAMV and the selectivity of binding to VAChT appear to be promising indicators of a useful PET tracer for imaging VAChT, a low brain extraction, in combination with only moderate specific accumulation in cholinergic brain regions and an insufficient in vivo stability prevents the application of this compound for neuroimaging in humans.


NeuroImage | 2015

First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-( 18 F)Flubatine☆

Osama Sabri; Georg-Alexander Becker; Philipp M. Meyer; Swen Hesse; Stephan Wilke; Susanne Graef; Marianne Patt; Julia Luthardt; Gudrun Wagenknecht; Alexander Hoepping; René Smits; Annegret Franke; Bernhard Sattler; Bernd Habermann; Petra Neuhaus; Steffen Fischer; Solveig Tiepolt; Winnie Deuther-Conrad; Henryk Barthel; Peter Schönknecht; Peter Brust

α4β2* nicotinic receptors (α4β2* nAChRs) could provide a biomarker in neuropsychiatric disorders (e.g., Alzheimers and Parkinsons diseases, depressive disorders, and nicotine addiction). However, there is a lack of α4β2* nAChR specific PET radioligands with kinetics fast enough to enable quantification of nAChR within a reasonable time frame. Following on from promising preclinical results, the aim of the present study was to evaluate for the first time in humans the novel PET radioligand (-)-[(18)F]Flubatine, formerly known as (-)-[(18)F]NCFHEB, as a tool for α4β2* nAChR imaging and in vivo quantification. Dynamic PET emission recordings lasting 270min were acquired on an ECAT EXACT HR+ scanner in 12 healthy male non-smoking subjects (71.0±5.0years) following the intravenous injection of 353.7±9.4MBq of (-)-[(18)F]Flubatine. Individual magnetic resonance imaging (MRI) was performed for co-registration. PET frames were motion-corrected, before the kinetics in 29 brain regions were characterized using 1- and 2-tissue compartment models (1TCM, 2TCM). Given the low amounts of metabolite present in plasma, we tested arterial input functions with and without metabolite corrections. In addition, pixel-based graphical analysis (Logan plot) was used. The models goodness of fit, with and without metabolite correction was assessed by Akaikes information criterion. Model parameters of interest were the total distribution volume VT (mL/cm(3)), and the binding potential BPND relative to the corpus callosum, which served as a reference region. The tracer proved to have high stability in vivo, with 90% of the plasma radioactivity remaining as untransformed parent compound at 90min, fast brain kinetics with rapid uptake and equilibration between free and receptor-bound tracer. Adequate fits of brain TACs were obtained with the 1TCM. VT could be reliably estimated within 90min for all regions investigated, and within 30min for low-binding regions such as the cerebral cortex. The rank order of VT by region corresponded well with the known distribution of α4β2* receptors (VT [thalamus] 27.4±3.8, VT [putamen] 12.7±0.9, VT [frontal cortex] 10.0±0.8, and VT [corpus callosum] 6.3±0.8). The BPND, which is a parameter of α4β2* nAChR availability, was 3.41±0.79 for the thalamus, 1.04±0.25 for the putamen and 0.61±0.23 for the frontal cortex, indicating high specific tracer binding. Use of the arterial input function without metabolite correction resulted in a 10% underestimation in VT, and was without important biasing effects on BPND. Altogether, kinetics and imaging properties of (-)-[(18)F]Flubatine appear favorable and suggest that (-)-[(18)F]Flubatine is a very suitable and clinically applicable PET tracer for in vivo imaging of α4β2* nAChRs in neuropsychiatric disorders.


Applied Radiation and Isotopes | 2013

Radiosynthesis of racemic and enantiomerically pure (-)-[18F]flubatine--a promising PET radiotracer for neuroimaging of α4β2 nicotinic acetylcholine receptors.

Steffen Fischer; Achim Hiller; René Smits; Alexander Hoepping; Uta Funke; Barbara Wenzel; Paul Cumming; Osama Sabri; Jörg Steinbach; Peter Brust

(-)-[(18)F]flubatine is a promising agent for visualization by PET of cerebral α4β2 nicotinic acetylcholine receptors (nAChRs), which are implicated in psychiatric and neurodegenerative disorders. Here, we describe a substantially improved two-step radiosynthesis strategy for (-)-[(18)F]flubatine, based on the nucleophilic radiofluorination of an enantiomerically pure precursor followed by deprotection of the intermediate. An extensive leaving group/protecting group library of precursors was tested. Application of a trimethylammonium-iodide precursor with a Boc-protecting group provided the best results: labeling efficiencies of 80-95%, RCY of 60±5%, radiochemical purity of >98%, and a specific activity of >350GBq/μmol. The radiosynthesis is easily transferable to an automated synthesis module.


Bioorganic & Medicinal Chemistry | 2014

Synthesis and biological evaluation of both enantiomers of [18F]flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors

René Smits; Steffen Fischer; Achim Hiller; Winnie Deuther-Conrad; Barbara Wenzel; Marianne Patt; Paul Cumming; Jörg Steinbach; Osama Sabri; Peter Brust; Alexander Hoepping

Both enantiomers of the epibatidine analogue flubatine display high affinity towards the α4β2 nicotinic acetylcholine receptor (nAChR) in vitro, accompanied by negligible interactions with diverse off-target proteins. Extended single dose toxicity studies in rodent indicated a NOEL (No Observed Effect Level) of 6.2μg/kg for (-)-flubatine and 1.55μg/kg for (+)-flubatine. We developed syntheses for both flubatine enantiomers and their corresponding precursors for radiolabeling. The newly synthesized trimethylammonium precursors allowed for highly efficient (18)F-radiolabelling in radiochemical yields >60% and specific activities >750GBq/μmol, thus making the radioligands practical for clinical investigation.


Organic and Medicinal Chemistry Letters | 2013

Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB2 receptors

Rodrigo Teodoro; Rareş-Petru Moldovan; Corinna Lueg; Robert Günther; Cornelius K. Donat; Friedrich-Alexander Ludwig; Steffen Fischer; Winnie Deuther-Conrad; Bernhard Wünsch; Peter Brust

Background The level of expression of cannabinoid receptor type 2 (CB2R) in healthy and diseased brain has not been fully elucidated. Therefore, there is a growing interest to assess the regional expression of CB2R in the brain. Positron emission tomography (PET) is an imaging technique, which allows quantitative monitoring of very low amounts of radiolabelled compounds in living organisms at high temporal and spatial resolution and, thus, has been widely used as a diagnostic tool in nuclear medicine. Here, we report on the radiofluorination of N-aryl-oxadiazolyl-propionamides at two different positions in the lead structure and on the biological evaluation of the potential of the two tracers [18F]1 and [18F]2 as CB2 receptor PET imaging agents. Results High binding affinity and specificity towards CB2 receptors of the lead structure remained unaffected by the structural changes such as the insertion of the aliphatic and aromatic fluorine in the selected labelling sites of 1 and 2. Aliphatic and aromatic radiofluorinations were optimized, and [18F]1 and [18F]2 were achieved in radiochemical yields of ≥30% with radiochemical purities of ≥98% and specific activities of 250 to 450 GBq/μmol. Organ distribution studies in female CD1 mice revealed that both radiotracers cross the blood–brain barrier (BBB) but undergo strong peripheral metabolism. At 30 min after injection, unmetabolized [18F]1 and [18F]2 accounted for 60% and 2% as well as 68% and 88% of the total activity in the plasma and brain, respectively. The main radiometabolite of [18F]2 could be identified as the free acid [18F]10, which has no affinity towards the CB1 and CB2 receptors but can cross the BBB. Conclusions N-aryl-oxadiazolyl-propionamides can successfully be radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB2R. Despite a promising in vitro behavior, a rather rapid peripheral metabolism of [18F]1 and [18F]2 in mice and the generation of brain permeable radiometabolites hamper the application of these radiotracers in vivo. However, it is expected that future synthetic modification aiming at a replacement of metabolically susceptible structural elements of [18F]1 and [18F]2 will help to elucidate the potential of this class of compounds for CB2R PET studies.


ChemMedChem | 2011

A 18F‐Labeled Fluorobutyl‐Substituted Spirocyclic Piperidine Derivative as a Selective Radioligand for PET Imaging of Sigma1 Receptors

Aurélie Maisonial; Eva Große Maestrup; Steffen Fischer; Achim Hiller; Matthias Scheunemann; Christian Wiese; Dirk Schepmann; Jörg Steinbach; Winnie Deuther-Conrad; Bernhard Wünsch; Peter Brust

In this study, we synthesized and evaluated a new spirocyclic piperidine derivative 3, containing a 4‐fluorobutyl side chain, as a PET radioligand for neuroimaging of σ1 receptors. In vitro, compound 3 displayed high affinity for σ1 receptors (Ki=1.2 nM) as well as high selectivity. [18F]3 radiosynthesis was performed from the corresponding tosylate precursor, with high radiochemical yield (45–51 %), purity (>98 %), and specific activity (>201 GBq μmol−1). Metabolic stability of [18F]3 in the brain of CD‐1 mice was verified, and no penetration of peripheral radiometabolites into the cerebral tissue was observed. Results of ex vivo autoradiography revealed that the distribution of [18F]3 in the brain corresponded to regions with high σ1 receptor density. The highest region‐specific total‐to‐nonspecific ratio was determined in the facial nucleus (4.00). Biodistribution studies indicated rapid and high levels in brain uptake of [18F]3 (2.2 % ID per gram at 5 min p.i.). Pre‐administration of haloperidol significantly inhibited [18F]3 uptake into the brain and σ1 receptor‐expressing organs, further confirming in vivo target specificity.


Brain Research | 2007

Preferred transport of O-(2-[18F]fluoroethyl)-d-tyrosine (d-FET) into the porcine brain

Victoria Makrides; Reinhard Bauer; Wolfgang A. Weber; Hans-Jürgen Wester; Steffen Fischer; Rainer Hinz; Katja Huggel; Thomas Opfermann; Michael Herzau; Vadivel Ganapathy; François Verrey; Peter Brust

Amino acids are valuable tracers for brain tumor imaging with positron emission tomography (PET). In this study the transport of O-(2-[(18)F]fluoroethyl)-D-tyrosine (D-FET) across the blood-brain barrier (BBB) was studied with PET in anesthetized piglets and patients after subtotal resection of brain tumors and compared with O-(2-[(18)F]fluoroethyl)-L-tyrosine (L-FET) and 3-O-methyl-6-[(18)F]fluoro-L-DOPA (L-OMFD). In piglets, compartmental modeling of PET data was used to calculate the rate constants for the blood-brain (K(1)) and the brain-blood (k(2)) transfer of D-FET, L-FET and L-OMFD. In patients standardized uptake values (SUVs) were calculated in brain cortex and lesions. Additionally, affinity determinations on various amino acid transporters (LAT1, LAT2, PAT1, XPCT) were performed in vitro using unlabeled D-FET, L-FET and L-OMFD. The initial brain uptake of D-FET in piglets was more than two-fold higher than that of l-FET, whereas the initial brain uptake of D-FET in patients was similar to that of L-FET. Calculation of K(1) and k(2) from the brain uptake curves and the plasma input data in piglets revealed about 4- and 2-fold higher values for D-FET compared to L-FET and L-OMFD, respectively. The distribution volume of D-FET in the piglet brain was slightly higher than that of L-FET as it was also found for most other organs. In brain tumor patients, initial D-FET uptake in the brain was similar to that of L-FET but showed faster tracer washout. L-FET uptake remained rather constant and provided a better delineation of residual tumor than D-FET. In conclusion, our data indicate considerable differences of stereoselective amino acid transport at the BBB in different species. Therefore, the results from animal experiments concerning BBB amino acid transport may not be transferable to humans.

Collaboration


Dive into the Steffen Fischer's collaboration.

Top Co-Authors

Avatar

Peter Brust

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Winnie Deuther-Conrad

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Jörg Steinbach

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Achim Hiller

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Scheunemann

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uta Funke

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge