Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Frey is active.

Publication


Featured researches published by Steffen Frey.


The EMBO Journal | 2009

Characterisation of the passive permeability barrier of nuclear pore complexes.

Dagmar Mohr; Steffen Frey; Torsten Fischer; Dirk Görlich

Nuclear pore complexes (NPCs) restrict uncontrolled nucleocytoplasmic fluxes of inert macromolecules but permit facilitated translocation of nuclear transport receptors and their cargo complexes. We probed the passive barrier of NPCs and observed sieve‐like properties with a dominating mesh or channel radius of 2.6 nm, which is narrower than proposed earlier. A small fraction of diffusion channels has a wider opening, explaining the very slow passage of larger molecules. The observed dominant passive diameter approximates the distance of adjacent hydrophobic clusters of FG repeats, supporting the model that the barrier is made of FG repeat domains cross‐linked with a spacing of an FG repeat unit length. Wheat germ agglutinin and the dominant‐negative importin β45‐462 fragment were previously regarded as selective inhibitors of facilitated NPC passage. We now observed that they do not distinguish between the passive and the facilitated mode. Instead, their inhibitory effect correlates with the size of the NPC‐passing molecule. They have little effect on small species, inhibit the passage of green fluorescent protein‐sized objects >10‐fold and virtually block the translocation of larger ones. This suggests that passive and facilitated NPC passage proceed through one and the same permeability barrier.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Amyloid-like interactions within nucleoporin FG hydrogels.

Christian Ader; Steffen Frey; Werner K. Maas; Hermann Broder Schmidt; Dirk Görlich; Marc Baldus

The 62 kDa FG repeat domain of the nucleoporin Nsp1p forms a hydrogel-based, sieve-like permeability barrier that excludes inert macromolecules but allows rapid entry of nuclear transport receptors (NTRs). We found that the N-terminal part of this domain, which is characterized by Asn-rich inter-FG spacers, forms a tough hydrogel. The C-terminal part comprises charged inter-FG spacers, shows low gelation propensity on its own, but binds the N-terminal part and passivates the FG hydrogel against nonselective interactions. It was previously shown that a hydrophobic collapse involving Phe residues is required for FG hydrogel formation. Using solid-state NMR spectroscopy, we now identified two additional types of intragel interactions, namely, transient hydrophobic interactions between Phe and methyl side chains as well as intermolecular β-sheets between the Asn-rich spacer regions. The latter appear to be the kinetically most stable structures within the FG hydrogel. They are also a central feature of neuronal inclusions formed by Asn/Gln-rich amyloid and prion proteins. The cohesive properties of FG repeats and the Asn/Gln-rich domain from the yeast prion Sup35p appear indeed so similar to each other that these two modules interact in trans. Our data, therefore, suggest a fully unexpected cellular function of such interchain β-structures in maintaining the permeability barrier of nuclear pores. They provide an explanation for how contacts between FG repeats might gain the kinetic stability to suppress passive fluxes through nuclear pores and yet allow rapid NTR passage.


The EMBO Journal | 2012

Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes.

Aksana A. Labokha; Sabine Gradmann; Steffen Frey; Bastian B. Hülsmann; Henning Urlaub; Marc Baldus; Dirk Görlich

Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPCs hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability.


PLOS Biology | 2013

Myelin Membrane Assembly Is Driven by a Phase Transition of Myelin Basic Proteins Into a Cohesive Protein Meshwork

Shweta Aggarwal; Nicolas Snaidero; Gesa Pähler; Steffen Frey; Paula Sánchez; Markus Zweckstetter; Andreas Janshoff; Anja Schneider; Marie-Theres Weil; Iwan A. T. Schaap; Dirk Görlich; Mikael Simons

Myelin basic protein undergoes a phase transition from a cytoplasmic soluble pool into a cohesive functional amyloid-like assembly; this may be one mechanism of myelin membrane biogenesis.


The EMBO Journal | 2009

FG/FxFG as well as GLFG repeats form a selective permeability barrier with self‐healing properties

Steffen Frey; Dirk Görlich

The permeability barrier of nuclear pore complexes (NPCs) controls all nucleo‐cytoplasmic exchange. It is freely permeable for small molecules. Objects larger than ≈30 kDa can efficiently cross this barrier only when bound to nuclear transport receptors (NTRs) that confer translocation‐promoting properties. We had shown earlier that the permeability barrier can be reconstituted in the form of a saturated FG/FxFG repeat hydrogel. We now show that GLFG repeats, the other major FG repeat type, can also form highly selective hydrogels. While supporting massive, reversible importin‐mediated cargo influx, FG/FxFG, GLFG or mixed hydrogels remained firm barriers towards inert objects that lacked nuclear transport signals. This indicates that FG hydrogels immediately reseal behind a translocating species and thus possess ‘self‐healing’ properties. NTRs not only left the barrier intact, they even tightened it against passive influx, pointing to a role for NTRs in establishing and maintaining the permeability barrier of NPCs.


Developmental Cell | 2011

A Size Barrier Limits Protein Diffusion at the Cell Surface to Generate Lipid-Rich Myelin-Membrane Sheets

Shweta Aggarwal; Larisa Yurlova; Nicholas Snaidero; Christina Reetz; Steffen Frey; Johannes Zimmermann; Gesa Pähler; Andreas Janshoff; Jens Friedrichs; Daniel J. Müller; Cornelia Goebel; Mikael Simons

The insulating layers of myelin membrane wrapped around axons by oligodendrocytes are essential for the rapid conduction of nerve impulses in the central nervous system. To fulfill this function as an electrical insulator, myelin requires a unique lipid and protein composition. Here we show that oligodendrocytes employ a barrier that functions as a physical filter to generate the lipid-rich myelin-membrane sheets. Myelin basic protein (MBP) forms this molecular sieve and restricts the diffusion of proteins with large cytoplasmic domains into myelin. The barrier is generated from MBP molecules that line the entire sheet and is, thus, intimately intertwined with the biogenesis of the polarized cell surface. This system might have evolved in oligodendrocytes in order to generate an anisotropic membrane organization that facilitates the assembly of highly insulating lipid-rich membranes.


EMBO Reports | 2010

Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors

Nico B. Eisele; Steffen Frey; Jacob Piehler; Dirk Görlich; Ralf P. Richter

Nuclear pore complexes (NPCs) are highly selective gates that mediate the exchange of all proteins and nucleic acids between the cytoplasm and the nucleus. Their selectivity relies on a supramolecular assembly of natively unfolded nucleoporin domains containing phenylalanine–glycine (FG)‐rich repeats (FG repeat domains), in a way that is at present poorly understood. We have developed ultrathin FG domain films that reproduce the mode of attachment and the density of FG repeats in NPCs, and that exhibit a thickness that corresponds to the nanoscopic dimensions of the native permeability barrier. By using a combination of biophysical characterization techniques, we quantified the binding of nuclear transport receptors (NTRs) to such FG domain films and analysed how this binding affects the swelling behaviour and mechanical properties of the films. The results extend our understanding of the interaction of FG domain assemblies with NTRs and contribute important information to refine the model of transport across the permeability barrier.


Biomacromolecules | 2012

Viscoelasticity of thin biomolecular films: A case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine- tag capturing QCM‑D sensor.

Nico B. Eisele; Fredrik I. Andersson; Steffen Frey; Ralf P. Richter

Immobilization of proteins onto surfaces is useful for the controlled generation of biomolecular assemblies that can be readily characterized with in situ label-free surface-sensitive techniques. Here we analyze the performance of a quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surface that enables the selective and oriented immobilization of histidine-tagged molecules for morphological and interaction studies. More specifically, we characterize monolayers of natively unfolded nucleoporin domains that are rich in phenylalanine-glycine repeats (FGRDs). An FGRD meshwork is thought to be responsible for the selectivity of macromolecular transport across the nuclear pore complex between the cytosol and the nucleus of living cells. We demonstrate that nucleoporin FGRD films can be formed on His-tag Capturing Sensors with properties comparable to a previously reported immobilization platform based on supported lipid bilayers (SLB). Approaches to extract the film thickness and viscoelastic properties in a time-resolved manner from the QCM-D response are described, with particular emphasis on the practical implementation of viscoelastic modeling and a detailed analysis of the quality and reliability of the fit. By comparing the results with theoretical predictions for the viscoelastic properties of polymer solutions and gels, and experimental data from an atomic force microscopy indentation assay, we demonstrate that detailed analysis can provide novel insight into the morphology and dynamics of FG repeat domain films. The immobilization approach is simple and versatile, and can be easily extended to other His-tagged biomolecules. The data analysis procedure should be useful for the characterization of other ultrathin biomolecular and polymer films.


Biophysical Journal | 2013

Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability.

Nico B. Eisele; Aksana A. Labokha; Steffen Frey; Dirk Görlich; Ralf P. Richter

Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport.


eLife | 2016

A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies

Raphael Zahn; Dino Osmanović; Severin Ehret; Carolina Araya Callis; Steffen Frey; Murray Stewart; Changjiang You; Dirk Görlich; Bart W. Hoogenboom; Ralf P. Richter

The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior – a key element for the transport selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. DOI: http://dx.doi.org/10.7554/eLife.14119.001

Collaboration


Dive into the Steffen Frey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adithya N. Ananth

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cees Dekker

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roderick Versloot

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge