Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Hetzinger is active.

Publication


Featured researches published by Steffen Hetzinger.


PALAIOS | 2009

High-resolution Mg/Ca ratios in a coralline red alga as a proxy for Bering Sea temperature variations from 1902 To 1967

Steffen Hetzinger; Jochen Halfar; Andreas Kronz; Robert S. Steneck; Walter H. Adey; P. A. Lebednik; Bernd R. Schöne

Abstract We present the first continuous, high-resolution record of Mg/Ca variations within an encrusting coralline red alga, Clathromorphum nereostratum, from Amchitka Island, Aleutian Islands. Mg/Ca ratios of individual growth increments were analyzed by measuring a single-point, electron-microprobe transect, yielding a resolution of ∼15 samples/year and a 65-year record (1902–1967) of variations. Results show that Mg/Ca ratios in the high-Mg calcite algal framework display pronounced annual cyclicity and archive late spring–late fall sea-surface temperatures (SST) corresponding to the main season of algal growth. Mg/Ca values correlate well to local SST, as well as to an air temperature record from the same region. High spatial correlation to large-scale SST variability in the subarctic North Pacific is observed, with patterns of strongest correlation following the direction of major oceanographic features that play a key role in the exchange of water masses between the North Pacific and the Bering Sea. Our data correlate well with a shorter Mg/Ca record from a second site, corroborating the ability of the alga to reliably record regional environmental signals. In addition, Mg/Ca ratios relate well to a 29-year δ18O time series measured on the same sample, providing additional support for the use of Mg in coralline red algae as a paleotemperature proxy that, unlike algal-δ18O, is not influenced by salinity fluctuations. Moreover, electron microprobe–based analysis enables higher sampling resolution and faster analysis, thus providing a promising approach for future studies of longer C. nereostratum records and applications to other coralline species.


Geology | 2008

Caribbean coral tracks Atlantic Multidecadal Oscillation and past hurricane activity

Steffen Hetzinger; Miriam Pfeiffer; Wolf-Christian Dullo; Noel Keenlyside; Mojib Latif; Jens Zinke

It is highly debated whether global warming contributed to the strong hurricane activity observed during the last decade. The crux of the recent debate is the limited length of the reliable instrumental record that exacerbates the detection of possible long-term changes in hurricane activity, which naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO). The AMO, itself a major mode of climate variability, remains also poorly understood because of limited data. Here, we present the first coral-based proxy record (δ18O) that clearly captures multidecadal variations in the AMO and the hurricane activity. Our record, obtained from a brain coral situated in the Atlantic hurricane domain, is equally sensitive to variations in sea surface temperature (SST) and seawater δ18O, with the latter being strongly linked to precipitation, by this means amplifying large-scale climate signals in coral δ18O. The SST and precipitation signals in the coral provide the longest, thus far, continuous proxy-based record of hurricane activity that interestingly exhibits a long-term increase over the last century. As multidecadal SST variations in this region are closely related to the AMO, this study raises new possibilities to extend the limited observations and to gain new insights into the mechanisms underlying the AMO and long-term hurricane variations.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy

Jochen Halfar; Walter H. Adey; Andreas Kronz; Steffen Hetzinger; Evan N. Edinger; William W. Fitzhugh

Significance The most concerning example of ongoing climate change is the rapid Arctic sea-ice retreat. While just a few years ago ice-free Arctic summers were expected by the end of this century, current models predict this to happen by 2030. This shows that our understanding of rapid changes in the cryosphere is limited, which is largely due to a lack of long-term observations. Newly discovered long-lived algae growing on the Arctic seafloor and forming tree-ring–like growth bands in a hard, calcified crust have recorded centuries of sea-ice history. The algae show that, while fast short-term changes have occurred in the past, the 20th century exhibited the lowest sea-ice cover in the past 646 years. Northern Hemisphere sea ice has been declining sharply over the past decades and 2012 exhibited the lowest Arctic summer sea-ice cover in historic times. Whereas ongoing changes are closely monitored through satellite observations, we have only limited data of past Arctic sea-ice cover derived from short historical records, indirect terrestrial proxies, and low-resolution marine sediment cores. A multicentury time series from extremely long-lived annual increment-forming crustose coralline algal buildups now provides the first high-resolution in situ marine proxy for sea-ice cover. Growth and Mg/Ca ratios of these Arctic-wide occurring calcified algae are sensitive to changes in both temperature and solar radiation. Growth sharply declines with increasing sea-ice blockage of light from the benthic algal habitat. The 646-y multisite record from the Canadian Arctic indicates that during the Little Ice Age, sea ice was extensive but highly variable on subdecadal time scales and coincided with an expansion of ice-dependent Thule/Labrador Inuit sea mammal hunters in the region. The past 150 y instead have been characterized by sea ice exhibiting multidecadal variability with a long-term decline distinctly steeper than at any time since the 14th century.


Geochemistry Geophysics Geosystems | 2006

Sr/Ca and δ18O in a fast‐growing Diploria strigosa coral: Evaluation of a new climate archive for the tropical Atlantic

Steffen Hetzinger; Miriam Pfeiffer; Wolf-Christian Dullo; Eberhard Ruprecht; C.-Dieter Garbe-Schönberg

This study provides the first monthly resolved, 41-year record of geochemical variations (δ18O and Sr/Ca) in a fast-growing Diploria strigosa brain coral from Guadeloupe, Caribbean Sea. Linear regression yields a significant correlation of coral Sr/Ca (δ18O) with instrumental sea surface temperature (SST) on both monthly and mean annual scales (e.g., r = −0.59 for correlation between Simple Ocean Data Assimilation (SODA) SST and Sr/Ca, and r = −0.66 for δ18O; mean annual scale, p < 0.0001). The generated coral Sr/Ca (δ18O)-SST calibration equations are consistent with each other and with published equations using other coral species from different regions. Moreover, a high correlation of coral Sr/Ca and δ18O with local air temperature on a mean annual scale (r = −0.78 for Sr/Ca; r = −0.73 for δ18O; p < 0.0001) demonstrates the applicability of geochemical proxies measured from Diploria strigosa corals as reliable recorders for interannual temperature variability. Both coral proxies are highly correlated with annual and seasonal mean time series of major SST indices in the northern tropical Atlantic (e.g., r = −0.71 for correlation between the index of North Tropical Atlantic SST anomaly and Sr/Ca, and r = −0.70 for δ18O; mean annual scale, p < 0.001). Furthermore, the coral proxies capture the impact of the El Nino–Southern Oscillation on the northern tropical Atlantic during boreal spring. Thus fast-growing Diploria strigosa corals are a promising new archive for the Atlantic Ocean.


Journal of Geophysical Research | 2011

Freshening of the Alaska Coastal Current recorded by coralline algal Ba/Ca ratios

P. Chan; Jochen Halfar; Branwen Williams; Steffen Hetzinger; Robert S. Steneck; Thomas Zack; Dorrit E. Jacob

Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean‐atmospheric processes and affecting the global cycling of the world’s oceans. Glacier‐fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long‐term high‐resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long‐lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal‐to‐multidecadal ocean‐atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.


Geology | 2011

225 years of Bering Sea climate and ecosystem dynamics revealed by coralline algal growth-increment widths

Jochen Halfar; Branwen Williams; Steffen Hetzinger; Robert S. Steneck; P. A. Lebednik; C. Winsborough; A. Omar; P. Chan; Alan D. Wanamaker

Bering Sea climate and ecosystem dynamics have recently undergone major changes that have affected seasonal sea ice distribution and marine life, including commercially important salmon fisheries. Unfortunately, long-term Bering Sea dynamics are poorly understood, largely because of an absence of high-resolution marine proxy archives. Here we present the first record compiled from annual growth-increment widths of long-lived coralline algae collected in shallow-water habitats spanning the entire Aleutian Islands. While algal growth in the Aleutians exhibits a variable relationship with regional temperatures, it is strongly driven by changes in solar radiation reaching the seafloor. Therefore, it provides an exceptional archive of long-term light dynamics, which in the Bering Sea is attributed to changes in strength of the Aleutian Low (AL), the dominant climate pattern of the subarctic North Pacific. The AL is positively related to Bering Sea cloudiness and wind strength, which in turn fosters upper-ocean mixing. Mixing raises surface-water nutrient concentrations and stimulates plankton production, which is positively linked to Alaskan salmon abundance. Enhanced clouds and plankton production increase shading on the shallow seafloor and reduce algal growth. Light-driven algal growth rates track proxy-derived salmon abundance from 1782 onward, but are poorly related to temperature-dominated Pacific Decadal Oscillation (PDO) variability prior to the twentieth century. The algal record suggests that the present-day relationship of AL and PDO varied historically and that salmon stocks have been more closely related to AL strength via its effect on plankton abundance rather than PDO-related temperatures.


Journal of Geophysical Research | 2010

Mg/Ca ratios in coralline algae record northwest Atlantic temperature variations and North Atlantic Oscillation relationships

G. Gamboa; Jochen Halfar; Steffen Hetzinger; Walter H. Adey; Thomas Zack; Barbara E. Kunz; Dorrit E. Jacob

Climate variability in the North Atlantic has been linked in part to the North Atlantic Oscillation (NAO). The NAO influences marine ecosystems in the northwestern Atlantic and transport variability of the cold Labrador Current. Understanding historic patterns of NAO variability requires long‐term and high‐resolution climate records that are not available from instrumental data. Here we present the first century‐scale proxy record of sea surface temperature (SST) variability from the Newfoundland shelf, a region from which other annual‐resolution shallow marine proxies are unavailable. The 116 year record was obtained from three sites along the eastern Newfoundland shelf using laser ablation inductively coupled mass spectrometry–determined Mg/Ca ratios in the crustose coralline alga Clathromorphum compactum. The alga is characterized by a high Mg‐calcite skeleton exhibiting annual growth increments and a century‐scale lifespan. Results indicate positive correlations between interannual variations in Mg/Ca ratios and both station‐based and gridded instrumental SST. In addition, the record shows high spatial correlations to SST across the Newfoundland shelf and the Gulf of St. Lawrence. Before 1950 the Mg/Ca proxy record reveals significant departures from gridded temperature records. While the Newfoundland shelf is generally considered a region of negative correlations to the NAO, the algal time series as well as a recent modeling study suggest a variable negative relationship with the NAO which is strongest after ∼1960 and before the mid‐1930s.


Geophysical Research Letters | 2014

Marine‐based multiproxy reconstruction of Atlantic multidecadal variability

Lea Svendsen; Steffen Hetzinger; Noel Keenlyside; Yongqi Gao

Atlantic multidecadal variability (AMV) is known to impact climate globally, and knowledge about the persistence of AMV is important for understanding past and future climate variability, as well as modeling and assessing climate impacts. The short observational data do not significantly resolve multidecadal variability, but recent paleoproxy reconstructions show multidecadal variability in North Atlantic temperature prior to the instrumental record. However, most of these reconstructions are land-based, not necessarily representing sea surface temperature. Proxy records are also subject to dating errors and microenvironmental effects. We extend the record of AMV 90 years past the instrumental record using principle component analysis of five marine-based proxy records to identify the leading mode of variability. The first principal component is consistent with the observed AMV, and multidecadal variability seems to persist prior to the instrumental record. Thus, we demonstrate that reconstructions of past Atlantic low-frequency variability can be improved by combining marine-based proxies.


Scientific Reports | 2013

Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

Steffen Hetzinger; Jochen Halfar; Thomas Zack; Jennifer Mecking; Barbara E. Kunz; Dorrit E. Jacob; Walter H. Adey

During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.


Scientific Reports | 2016

A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events

Steffen Hetzinger; Miriam Pfeiffer; Wolf-Christian Dullo; Jens Zinke; Dieter Garbe-Schönberg

Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940–2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997–98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997–98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.

Collaboration


Dive into the Steffen Hetzinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter H. Adey

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Zack

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Kronz

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Noel Keenlyside

Bjerknes Centre for Climate Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge