Steffen Klamt
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffen Klamt.
Nature | 2002
Jörg Stelling; Steffen Klamt; Katja Bettenbrock; Stefan Schuster; Ernst Dieter Gilles
The relationship between structure, function and regulation in complex cellular networks is a still largely open question. Systems biology aims to explain this relationship by combining experimental and theoretical approaches. Current theories have various strengths and shortcomings in providing an integrated, predictive description of cellular networks. Specifically, dynamic mathematical modelling of large-scale networks meets difficulties because the necessary mechanistic detail and kinetic parameters are rarely available. In contrast, structure-oriented analyses only require network topology, which is well known in many cases. Previous approaches of this type focus on network robustness or metabolic phenotype, but do not give predictions on cellular regulation. Here, we devise a theoretical method for simultaneously predicting key aspects of network functionality, robustness and gene regulation from network structure alone. This is achieved by determining and analysing the non-decomposable pathways able to operate coherently at steady state (elementary flux modes). We use the example of Escherichia coli central metabolism to illustrate the method.
BMC Systems Biology | 2007
Steffen Klamt; Julio Saez-Rodriguez; Ernst Dieter Gilles
BackgroundMathematical modelling of cellular networks is an integral part of Systems Biology and requires appropriate software tools. An important class of methods in Systems Biology deals with structural or topological (parameter-free) analysis of cellular networks. So far, software tools providing such methods for both mass-flow (metabolic) as well as signal-flow (signalling and regulatory) networks are lacking.ResultsHerein we introduce CellNetAnalyzer, a toolbox for MATLAB facilitating, in an interactive and visual manner, a comprehensive structural analysis of metabolic, signalling and regulatory networks. The particular strengths of CellNetAnalyzer are methods for functional network analysis, i.e. for characterising functional states, for detecting functional dependencies, for identifying intervention strategies, or for giving qualitative predictions on the effects of perturbations. CellNetAnalyzer extends its predecessor FluxAnalyzer (originally developed for metabolic network and pathway analysis) by a new modelling framework for examining signal-flow networks. Two of the novel methods implemented in CellNetAnalyzer are discussed in more detail regarding algorithmic issues and applications: the computation and analysis (i) of shortest positive and shortest negative paths and circuits in interaction graphs and (ii) of minimal intervention sets in logical networks.ConclusionCellNetAnalyzer provides a single suite to perform structural and qualitative analysis of both mass-flow- and signal-flow-based cellular networks in a user-friendly environment. It provides a large toolbox with various, partially unique, functions and algorithms for functional network analysis.CellNetAnalyzer is freely available for academic use.
BMC Bioinformatics | 2006
Steffen Klamt; Julio Saez-Rodriguez; Jonathan A. Lindquist; Luca Simeoni; Ernst Dieter Gilles
BackgroundStructural analysis of cellular interaction networks contributes to a deeper understanding of network-wide interdependencies, causal relationships, and basic functional capabilities. While the structural analysis of metabolic networks is a well-established field, similar methodologies have been scarcely developed and applied to signaling and regulatory networks.ResultsWe propose formalisms and methods, relying on adapted and partially newly introduced approaches, which facilitate a structural analysis of signaling and regulatory networks with focus on functional aspects. We use two different formalisms to represent and analyze interaction networks: interaction graphs and (logical) interaction hypergraphs. We show that, in interaction graphs, the determination of feedback cycles and of all the signaling paths between any pair of species is equivalent to the computation of elementary modes known from metabolic networks. Knowledge on the set of signaling paths and feedback loops facilitates the computation of intervention strategies and the classification of compounds into activators, inhibitors, ambivalent factors, and non-affecting factors with respect to a certain species. In some cases, qualitative effects induced by perturbations can be unambiguously predicted from the network scheme. Interaction graphs however, are not able to capture AND relationships which do frequently occur in interaction networks. The consequent logical concatenation of all the arcs pointing into a species leads to Boolean networks. For a Boolean representation of cellular interaction networks we propose a formalism based on logical (or signed) interaction hypergraphs, which facilitates in particular a logical steady state analysis (LSSA). LSSA enables studies on the logical processing of signals and the identification of optimal intervention points (targets) in cellular networks. LSSA also reveals network regions whose parametrization and initial states are crucial for the dynamic behavior.We have implemented these methods in our software tool CellNetAnalyzer (successor of FluxAnalyzer) and illustrate their applicability using a logical model of T-Cell receptor signaling providing non-intuitive results regarding feedback loops, essential elements, and (logical) signal processing upon different stimuli.ConclusionThe methods and formalisms we propose herein are another step towards the comprehensive functional analysis of cellular interaction networks. Their potential, shown on a realistic T-cell signaling model, makes them a promising tool.
Molecular Systems Biology | 2009
Julio Saez-Rodriguez; Leonidas G. Alexopoulos; Jonathan Epperlein; Regina Samaga; Douglas A. Lauffenburger; Steffen Klamt; Peter K. Sorger
Large‐scale protein signalling networks are useful for exploring complex biochemical pathways but do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding disease and designing drugs. Here we describe a computational approach—implemented in the free CNO software—for turning signalling networks into logical models and calibrating the models against experimental data. When a literature‐derived network of 82 proteins covering the immediate‐early responses of human cells to seven cytokines was modelled, we found that training against experimental data dramatically increased predictive power, despite the crudeness of Boolean approximations, while significantly reducing the number of interactions. Thus, many interactions in literature‐derived networks do not appear to be functional in the liver cells from which we collected our data. At the same time, CNO identified several new interactions that improved the match of model to data. Although missing from the starting network, these interactions have literature support. Our approach, therefore, represents a means to generate predictive, cell‐type‐specific models of mammalian signalling from generic protein signalling networks.
PLOS Computational Biology | 2005
Julio Saez-Rodriguez; Luca Simeoni; Jonathan A. Lindquist; Rebecca Hemenway; Ursula Bommhardt; Boerge Arndt; Utz-Uwe Haus; Robert Weismantel; Ernst Dieter Gilles; Steffen Klamt; Burkhart Schraven
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.
Trends in Biotechnology | 2003
Steffen Klamt; Jörg Stelling
Metabolic pathway analysis is becoming increasingly important for assessing inherent network properties in (reconstructed) biochemical reaction networks. Of the two most promising concepts for pathway analysis, one relies on elementary flux modes and the other on extreme pathways. These concepts are closely related because extreme pathways are a subset of elementary modes. Here, the common features, differences and applicability of these concepts are discussed. Assessing metabolic systems by the set of extreme pathways can, in general, give misleading results owing to the exclusion of possibly important routes. However, in certain network topologies, the sets of elementary modes and extreme pathways coincide. This is quite often the case in realistic applications. In our opinion, the unification of both approaches into one common framework for metabolic pathway analysis is necessary and achievable.
BMC Bioinformatics | 2004
Julien Gagneur; Steffen Klamt
BackgroundMetabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods.ResultsWe show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date.ConclusionsThe equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks.
Bioinformatics | 2004
Steffen Klamt; Ernst Dieter Gilles
MOTIVATION Structural studies of metabolic networks yield deeper insight into topology, functionality and capabilities of the metabolisms of different organisms. Here, we address the analysis of potential failure modes in metabolic networks whose occurrence will render the network structurally incapable of performing certain functions. Such studies will help to identify crucial parts in the network structure and to find suitable targets for repressing undesired metabolic functions. RESULTS We introduce the concept of minimal cut sets for biochemical networks. A minimal cut set (MCS) is a minimal (irreducible) set of reactions in the network whose inactivation will definitely lead to a failure in certain network functions. We present an algorithm which enables the computation of the MCSs in a given network related to user-defined objective reactions. This algorithm operates on elementary modes. A number of potential applications are outlined, including network verifications, phenotype predictions, assessing structural robustness and fragility, metabolic flux analysis and target identification in drug discovery. Applications are illustrated by the MCSs in the central metabolism of Escherichia coli for growth on different substrates. AVAILABILITY Computation and analysis of MCSs is an additional feature of the FluxAnalyzer (freely available for academic users upon request, special contracts for industrial companies; see web page below). SUPPLEMENTARY INFORMATION http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer
Molecular Biology Reports | 2002
Steffen Klamt; Jörg Stelling
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.
Bioinformatics | 2003
Steffen Klamt; Jörg Stelling; Martin Ginkel; Ernst Dieter Gilles
MOTIVATION The analysis of structure, pathways and flux distributions in metabolic networks has become an important approach for understanding the functionality of metabolic systems. The need of a user-friendly platform for stoichiometric modeling of metabolic networks in silico is evident. RESULTS The FluxAnalyzer is a package for MATLAB and facilitates integrated pathway and flux analysis for metabolic networks within a graphical user interface. Arbitrary metabolic network models can be composed by instances of four types of network elements. The abstract network model is linked with network graphics leading to interactive flux maps which allow for user input and display of calculation results within a network visualization. Therein, a large and powerful collection of tools and algorithms can be applied interactively including metabolic flux analysis, flux optimization, detection of topological features and pathway analysis by elementary flux modes or extreme pathways. The FluxAnalyzer has been applied and tested for complex networks with more than 500,000 elementary modes. Some aspects of the combinatorial complexity of pathway analysis in metabolic networks are discussed. AVAILABILITY Upon request from the corresponding author. Free for academic users (license agreement). Special contracts are available for industrial corporations. SUPPLEMENTARY INFORMATION http://www.mpi-magdeburg.mpg.de/projects/fluxanalyzer.