Steffen Michaelis de Vasconcellos
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Steffen Michaelis de Vasconcellos is active.
Publication
Featured researches published by Steffen Michaelis de Vasconcellos.
Nano Letters | 2014
Dirk J. Groenendijk; Michele Buscema; Gary A. Steele; Steffen Michaelis de Vasconcellos; Rudolf Bratschitsch; Herre S. J. van der Zant; Andres Castellanos-Gomez
Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.
Nano Letters | 2016
Robert Schmidt; Gunnar Berghäuser; Robert J. Schneider; Malte Selig; Philipp Tonndorf; Ermin Malic; Andreas Knorr; Steffen Michaelis de Vasconcellos; Rudolf Bratschitsch
Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.
Advanced Materials | 2016
Johannes Kern; Iris Niehues; Philipp Tonndorf; Robert Schmidt; Daniel Wigger; Robert Schneider; Torsten Stiehm; Steffen Michaelis de Vasconcellos; Doris Reiter; Tilmann Kuhn; Rudolf Bratschitsch
Single-photon emitters in monolayer WSe2 are created at the nanoscale gap between two single-crystalline gold nanorods. The atomically thin semiconductor conforms to the metal nanostructure and is bent at the position of the gap. The induced strain leads to the formation of a localized potential well inside the gap. Single-photon emitters are localized there with a precision better than 140 nm.
2D Materials | 2016
Robert Schmidt; Iris Niehues; Robert Schneider; Matthias Drüppel; Thorsten Deilmann; Michael Rohlfing; Steffen Michaelis de Vasconcellos; Andres Castellanos-Gomez; Rudolf Bratschitsch
Due to their unique band structure, single layers of transition metal dichalcogenides are promising for new atomic-scale physics and devices. It has been shown that the band structure and the excitonic transitions can be tuned by straining the material. Recently, the discovery of single-photon emission from localized excitons has put monolayer WSe2 in the spotlight. The localized light emitters might be related to local strain potentials in the monolayer. Here, we measure strain-dependent energy shifts for the A, B, C, and D excitons for uniaxial tensile strain up to 1.4% in monolayer WSe2 by performing absorption measurements. A gauge factor of and is derived for the A, B, C, and D exciton, respectively. These values are in good agreement with ab initio GW-BSE calculations. Furthermore, we examine the spatial strain distribution in the WSe2 monolayer at different applied strain levels. We find that the size of the monolayer is crucial for an efficient transfer of strain from the substrate to the monolayer.
arXiv: Mesoscale and Nanoscale Physics | 2017
Riccardo Frisenda; Matthias Drüppel; Robert Schmidt; Steffen Michaelis de Vasconcellos; David Perez de Lara; Rudolf Bratschitsch; Michael Rohlfing; Andres Castellanos-Gomez
Since their discovery, single-layer semiconducting transition metal dichalcogenides have attracted much attention, thanks to their outstanding optical and mechanical properties. Strain engineering in these two-dimensional materials aims to tune their bandgap energy and to modify their optoelectronic properties by the application of external strain. In this paper, we demonstrate that biaxial strain, both tensile and compressive, can be applied and released in a timescale of a few seconds in a reproducible way on transition metal dichalcogenides monolayers deposited on polymeric substrates. We can control the amount of biaxial strain applied by letting the substrate expand or compress. To do this, we change the substrate temperature and choose materials with a large thermal expansion coefficient. After the investigation of the substrate-dependent strain transfer, we performed micro-differential spectroscopy of four transition metal dichalcogenides monolayers (MoS2, MoSe2, WS2, WSe2) under the application of biaxial strain and measured their optical properties. For tensile strain, we observe a redshift of the bandgap that reaches a value as large as 95 meV/% in the case of single-layer WS2 deposited on polypropylene. The observed bandgap shifts as a function of substrate extension/compression follow the order MoSe2 < MoS2 < WSe2 < WS2. Theoretical calculations of these four materials under biaxial strain predict the same trend for the material-dependent rates of the shift and reproduce well the features observed in the measured reflectance spectra.Strain engineering: Tuning the bandgap of 2D materialsThe bandgap of two-dimensional semiconducting materials can be easily tuned in real time by stretching or compressing them. An international team of researcher led by Dr. Andres Castellanos-Gomez at IMDEA Nanoscience, Spain, studied the optical properties of single-atom thick two-dimensional semiconductors under the application of tensile or compressive biaxial strain. In order to apply the strain the researchers exploited the thermal expansion or compression of the different substrates carrying the atomically thin materials and then compared their results to atomistic simulations. This strain method can be applied in a fast and reversible way and it leads to large changes in the band structure of these semiconducting materials. Research into strain engineering two-dimensional materials may help us in fabricating novel devices like color-changing light emitters or novel and more efficient solar cells.
Nature Communications | 2017
Ashish Arora; Matthias Drüppel; Robert Schmidt; Thorsten Deilmann; Robert Schneider; Maciej R. Molas; Philipp Marauhn; Steffen Michaelis de Vasconcellos; M. Potemski; Michael Rohlfing; Rudolf Bratschitsch
Bound electron–hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose–Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe2, we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.
Nano Letters | 2018
Iris Niehues; Robert Schmidt; Matthias Drüppel; Philipp Marauhn; Dominik Christiansen; Malte Selig; Gunnar Berghäuser; Daniel Wigger; Robert Schneider; Lisa Braasch; Rouven Koch; Andres Castellanos-Gomez; Tilmann Kuhn; Andreas Knorr; Ermin Malic; Michael Rohlfing; Steffen Michaelis de Vasconcellos; Rudolf Bratschitsch
Semiconducting transition metal dichalcogenide (TMDC) monolayers have exceptional physical properties. They show bright photoluminescence due to their unique band structure and absorb more than 10% of the light at their excitonic resonances despite their atomic thickness. At room temperature, the width of the exciton transitions is governed by the exciton-phonon interaction leading to strongly asymmetric line shapes. TMDC monolayers are also extremely flexible, sustaining mechanical strain of about 10% without breaking. The excitonic properties strongly depend on strain. For example, exciton energies of TMDC monolayers significantly redshift under uniaxial tensile strain. Here, we demonstrate that the width and the asymmetric line shape of excitonic resonances in TMDC monolayers can be controlled with applied strain. We measure photoluminescence and absorption spectra of the A exciton in monolayer MoSe2, WSe2, WS2, and MoS2 under uniaxial tensile strain. We find that the A exciton substantially narrows and becomes more symmetric for the selenium-based monolayer materials, while no change is observed for atomically thin WS2. For MoS2 monolayers, the line width increases. These effects are due to a modified exciton-phonon coupling at increasing strain levels because of changes in the electronic band structure of the respective monolayer materials. This interpretation based on steady-state experiments is corroborated by time-resolved photoluminescence measurements. Our results demonstrate that moderate strain values on the order of only 1% are already sufficient to globally tune the exciton-phonon interaction in TMDC monolayers and hold the promise for controlling the coupling on the nanoscale.
Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena | 2014
Raul D. Rodriguez; Susanne Müller; Evgeniya Sheremet; D. R. T. Zahn; Alexander Villabona; Santos A. López-Rivera; Philipp Tonndorf; Steffen Michaelis de Vasconcellos; Rudolf Bratschitsch
Two-dimensional materials awakened a strong interest in the scientific and technological communities due to their exceptional properties that can be tuned by the material thickness and chemistry. In order to correlate optical properties with crystallographic structure and morphology, in this work, the authors aim at studying GaSe nanoflakes deposited on highly ordered pyrolytic graphite by means of atomic force microscopy, Raman, and photoluminescence (PL) spectroscopies. The authors found that the basal plane of the flakes can be attributed to the e-phase expected for bulk samples grown by the Bridgman method. However, a strong difference in the Raman spectra was systematically found at the edge of our GaSe flakes. Forbidden Raman modes located around 250 cm−1 were selectively observed at specific locations. These modes could not be directly attributed to the e-phase observed in the basal plane or in the bulk. The atomic force microscopy investigations show that high topographical features characterize t...
Nature Communications | 2018
Gunnar Berghäuser; Ivan Bernal-Villamil; Robert Schmidt; Robert Schneider; Iris Niehues; Paul Erhart; Steffen Michaelis de Vasconcellos; Rudolf Bratschitsch; Andreas Knorr; Ermin Malic
Large spin–orbit coupling in combination with circular dichroism allows access to spin-polarized and valley-polarized states in a controlled way in transition metal dichalcogenides. The promising application in spin-valleytronics devices requires a thorough understanding of intervalley coupling mechanisms, which determine the lifetime of spin and valley polarizations. Here we present a joint theory–experiment study shedding light on the Dexter-like intervalley coupling. We reveal that this mechanism couples A and B excitonic states in different valleys, giving rise to an efficient intervalley transfer of coherent exciton populations. We demonstrate that the valley polarization vanishes and is even inverted for A excitons, when the B exciton is resonantly excited and vice versa. Our theoretical findings are supported by energy-resolved and valley-resolved pump-probe experiments and also provide an explanation for the recently measured up-conversion in photoluminescence. The gained insights might help to develop strategies to overcome the intrinsic limit for spin and valley polarizations.In atomically thin transition metal dichalcogenides, spin- and valley-polarised states can be addressed thanks to large spin–orbit coupling and circular dichroism. Here, the authors investigate theoretically and experimentally the decay dynamics of spin and valley polarisation in transition metal dichalcogenide monolayers.
Nano Letters | 2017
Philipp Tonndorf; Osvaldo Del Pozo-Zamudio; Nico Gruhler; Johannes Kern; Robert Schmidt; Alexander I. Dmitriev; Anatoly P. Bakhtinov; A. I. Tartakovskii; Wolfram H. P. Pernice; Steffen Michaelis de Vasconcellos; Rudolf Bratschitsch
Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si3N4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si3N4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.