Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffen Neumann is active.

Publication


Featured researches published by Steffen Neumann.


Journal of Mass Spectrometry | 2010

MassBank: a public repository for sharing mass spectral data for life sciences.

Hisayuki Horai; Masanori Arita; Shigehiko Kanaya; Yoshito Nihei; Tasuku Ikeda; Kazuhiro Suwa; Yuya Ojima; Kenichi Tanaka; Satoshi Tanaka; Ken Aoshima; Yoshiya Oda; Yuji Kakazu; Miyako Kusano; Takayuki Tohge; Fumio Matsuda; Yuji Sawada; Masami Yokota Hirai; Hiroki Nakanishi; Kazutaka Ikeda; Naoshige Akimoto; Takashi Maoka; Hiroki Takahashi; Takeshi Ara; Nozomu Sakurai; Hideyuki Suzuki; Daisuke Shibata; Steffen Neumann; Takashi Iida; Ken Tanaka; Kimito Funatsu

MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.


Nature Biotechnology | 2012

A Cross-platform Toolkit for Mass Spectrometry and Proteomics

Matthew C. Chambers; Brendan MacLean; Robert Burke; Dario Amodei; Daniel Ruderman; Steffen Neumann; Laurent Gatto; Bernd Fischer; Brian Pratt; Katherine Hoff; Darren Kessner; Natalie Tasman; Nicholas J. Shulman; Barbara Frewen; Tahmina A Baker; Mi-Youn Brusniak; Christopher Paulse; David M. Creasy; Lisa Flashner; Kian Kani; Chris Moulding; Sean L. Seymour; Lydia M Nuwaysir; Brent Lefebvre; Frank Kuhlmann; Joe Roark; Paape Rainer; Suckau Detlev; Tina Hemenway; Andreas Huhmer

Mass-spectrometry-based proteomics has become an important component of biological research. Numerous proteomics methods have been developed to identify and quantify the proteins in biological and clinical samples1, identify pathways affected by endogenous and exogenous perturbations2, and characterize protein complexes3. Despite successes, the interpretation of vast proteomics datasets remains a challenge. There have been several calls for improvements and standardization of proteomics data analysis frameworks, as well as for an application-programming interface for proteomics data access4,5. In response, we have developed the ProteoWizard Toolkit, a robust set of open-source, software libraries and applications designed to facilitate proteomics research. The libraries implement the first-ever, non-commercial, unified data access interface for proteomics, bridging field-standard open formats and all common vendor formats. In addition, diverse software classes enable rapid development of vendor-agnostic proteomics software. Additionally, ProteoWizard projects and applications, building upon the core libraries, are becoming standard tools for enabling significant proteomics inquiries.


BMC Bioinformatics | 2008

Highly sensitive feature detection for high resolution LC/MS

Ralf Tautenhahn; Christoph Böttcher; Steffen Neumann

BackgroundLiquid chromatography coupled to mass spectrometry (LC/MS) is an important analytical technology for e.g. metabolomics experiments. Determining the boundaries, centres and intensities of the two-dimensional signals in the LC/MS raw data is called feature detection. For the subsequent analysis of complex samples such as plant extracts, which may contain hundreds of compounds, corresponding to thousands of features – a reliable feature detection is mandatory.ResultsWe developed a new feature detection algorithm centWave for high-resolution LC/MS data sets, which collects regions of interest (partial mass traces) in the raw-data, and applies continuous wavelet transformation and optionally Gauss-fitting in the chromatographic domain. We evaluated our feature detection algorithm on dilution series and mixtures of seed and leaf extracts, and estimated recall, precision and F-score of seed and leaf specific features in two experiments of different complexity.ConclusionThe new feature detection algorithm meets the requirements of current metabolomics experiments. centWave can detect close-by and partially overlapping features and has the highest overall recall and precision values compared to the other algorithms, matchedFilter (the original algorithm of XCMS) and the centroidPicker from MZmine. The centWave algorithm was integrated into the Bioconductor R-package XCMS and is available from http://www.bioconductor.org/


BMC Bioinformatics | 2010

In silico fragmentation for computer assisted identification of metabolite mass spectra.

Sebastian Wolf; Stephan Schmidt; Matthias Müller-Hannemann; Steffen Neumann

BackgroundMass spectrometry has become the analytical method of choice in metabolomics research. The identification of unknown compounds is the main bottleneck. In addition to the precursor mass, tandem MS spectra carry informative fragment peaks, but the coverage of spectral libraries of measured reference compounds are far from covering the complete chemical space. Compound libraries such as PubChem or KEGG describe a larger number of compounds, which can be used to compare their in silico fragmentation with spectra of unknown metabolites.ResultsWe created the MetFrag suite to obtain a candidate list from compound libraries based on the precursor mass, subsequently ranked by the agreement between measured and in silico fragments. In the evaluation MetFrag was able to rank most of the correct compounds within the top 3 candidates returned by an exact mass query in KEGG. Compared to a previously published study, MetFrag obtained better results than the commercial MassFrontier software. Especially for large compound libraries, the candidates with a good score show a high structural similarity or just different stereochemistry, a subsequent clustering based on chemical distances reduces this redundancy. The in silico fragmentation requires less than a second to process a molecule, and MetFrag performs a search in KEGG or PubChem on average within 30 to 300 seconds, respectively, on an average desktop PC.ConclusionsWe presented a method that is able to identify small molecules from tandem MS measurements, even without spectral reference data or a large set of fragmentation rules. With todays massive general purpose compound libraries we obtain dozens of very similar candidates, which still allows a confident estimate of the correct compound class. Our tool MetFrag improves the identification of unknown substances from tandem MS spectra and delivers better results than comparable commercial software. MetFrag is available through a web application, web services and as java library. The web frontend allows the end-user to analyse single spectra and browse the results, whereas the web service and console application are aimed to perform batch searches and evaluation.


Molecular & Cellular Proteomics | 2011

mzML—a Community Standard for Mass Spectrometry Data

Lennart Martens; Matthew C. Chambers; Marc Sturm; Darren Kessner; Fredrik Levander; Jim Shofstahl; Wilfred H. Tang; Andreas Römpp; Steffen Neumann; Angel Pizarro; Luisa Montecchi-Palazzi; Natalie Tasman; Mike Coleman; Florian Reisinger; Puneet Souda; Henning Hermjakob; Pierre-Alain Binz; Eric W. Deutsch

Mass spectrometry is a fundamental tool for discovery and analysis in the life sciences. With the rapid advances in mass spectrometry technology and methods, it has become imperative to provide a standard output format for mass spectrometry data that will facilitate data sharing and analysis. Initially, the efforts to develop a standard format for mass spectrometry data resulted in multiple formats, each designed with a different underlying philosophy. To resolve the issues associated with having multiple formats, vendors, researchers, and software developers convened under the banner of the HUPO PSI to develop a single standard. The new data format incorporated many of the desirable technical attributes from the previous data formats, while adding a number of improvements, including features such as a controlled vocabulary with validation tools to ensure consistent usage of the format, improved support for selected reaction monitoring data, and immediately available implementations to facilitate rapid adoption by the community. The resulting standard data format, mzML, is a well tested open-source format for mass spectrometer output files that can be readily utilized by the community and easily adapted for incremental advances in mass spectrometry technology.


Analytical Chemistry | 2012

CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets

Carsten Kuhl; Ralf Tautenhahn; Christoph Böttcher; Tony R. Larson; Steffen Neumann

Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive manual analysis and thus form a major bottleneck in data interpretation. Here we present CAMERA, a Bioconductor package integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data. To evaluate the algorithms, we compared the annotation of CAMERA against a manually defined annotation for a mixture of known compounds spiked into a complex matrix at different concentrations. CAMERA successfully extracted accurate masses for 89.7% and 90.3% of the annotatable compounds in positive and negative ion modes, respectively. Furthermore, we present a novel annotation approach that combines spectral information of data acquired in opposite ion modes to further improve the annotation rate. We demonstrate the utility of CAMERA in two different, easily adoptable plant metabolomics experiments, where the application of CAMERA drastically reduced the amount of manual analysis.


Bioinformatics | 2010

ISA software suite

Philippe Rocca-Serra; Marco Brandizi; Eamonn Maguire; Nataliya Sklyar; Chris F. Taylor; Kimberly Begley; Dawn Field; Stephen Harris; Winston Hide; Oliver Hofmann; Steffen Neumann; Peter Sterk; Weida Tong; Susanna-Assunta Sansone

Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories. Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org Contact: [email protected]


Analytical and Bioanalytical Chemistry | 2010

Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules

Steffen Neumann; Sebastian Böcker

The identification of compounds from mass spectrometry (MS) data is still seen as a major bottleneck in the interpretation of MS data. This is particularly the case for the identification of small compounds such as metabolites, where until recently little progress has been made. Here we review the available approaches to annotation and identification of chemical compounds based on electrospray ionization (ESI-MS) data. The methods are not limited to metabolomics applications, but are applicable to any small compounds amenable to MS analysis. Starting with the definition of identification, we focus on the analysis of tandem mass and MSn spectra, which can provide a wealth of structural information. Searching in libraries of reference spectra provides the most reliable source of identification, especially if measured on comparable instruments. We review several choices for the distance functions. The identification without reference spectra is even more challenging, because it requires approaches to interpret tandem mass spectra with regard to the molecular structure. Both commercial and free tools are capable of mining general-purpose compound libraries, and identifying candidate compounds. The holy grail of computational mass spectrometry is the de novo deduction of structure hypotheses for compounds, where method development has only started thus far. In a case study, we apply several of the available methods to the three compounds, kaempferol, reserpine, and verapamil, and investigate whether this results in reliable identifications.


Plant Physiology | 2008

Metabolome Analysis of Biosynthetic Mutants Reveals a Diversity of Metabolic Changes and Allows Identification of a Large Number of New Compounds in Arabidopsis

Christoph Böttcher; Edda von Roepenack-Lahaye; Jiirgen Schmidt; Steffen Neumann; Dierk Scheel; Stephan Clemens

Metabolomics is facing a major challenge: the lack of knowledge about metabolites present in a given biological system. Thus, large-scale discovery of metabolites is considered an essential step toward a better understanding of plant metabolism. We show here that the application of a metabolomics approach generating structural information for the analysis of Arabidopsis (Arabidopsis thaliana) mutants allows the efficient cataloging of metabolites. Fifty-six percent of the features that showed significant differences in abundance between seeds of wild-type, transparent testa4, and transparent testa5 plants could be annotated. Seventy-five compounds were structurally characterized, 21 of which could be identified. About 40 compounds had not been known from Arabidopsis before. Also, the high-resolution analysis revealed an unanticipated expansion of metabolic conversions upstream of biosynthetic blocks. Deficiency in chalcone synthase results in the increased seed-specific biosynthesis of a range of phenolic choline esters. Similarly, a lack of chalcone isomerase activity leads to the accumulation of various naringenin chalcone derivatives. Furthermore, our data provide insight into the connection between p-coumaroyl-coenzyme A-dependent pathways. Lack of flavonoid biosynthesis results in elevated synthesis not only of p-coumarate-derived choline esters but also of sinapate-derived metabolites. However, sinapoylcholine is not the only accumulating end product. Instead, we observed specific and sophisticated changes in the complex pattern of sinapate derivatives.


Journal of Mass Spectrometry | 2013

MetFusion: integration of compound identification strategies.

Michael Gerlich; Steffen Neumann

Mass spectrometry (MS) is an important analytical technique for the detection and identification of small compounds. The main bottleneck in the interpretation of metabolite profiling or screening experiments is the identification of unknown compounds from tandem mass spectra. Spectral libraries for tandem MS, such as MassBank or NIST, contain reference spectra for many compounds, but their limited chemical coverage reduces the chance for a correct and reliable identification of unknown spectra outside the database domain. On the other hand, compound databases like PubChem or ChemSpider have a much larger coverage of the chemical space, but they cannot be queried with spectral information directly. Recently, computational mass spectrometry methods and in silico fragmentation prediction allow users to search such databases of chemical structures. We present a new strategy called MetFusion to combine identification results from several resources, in particular, from the in silico fragmenter MetFrag with the spectral library MassBank to improve compound identification. We evaluate the performance on a set of 1062 spectra and achieve an improved ranking of the correct compound from rank 28 using MetFrag alone, to rank 7 with MetFusion, even if the correct compound and similar compounds are absent from the spectral library. On the basis of the evaluation, we extrapolate the performance of MetFusion to the KEGG compound database.

Collaboration


Dive into the Steffen Neumann's collaboration.

Top Co-Authors

Avatar

Emma L. Schymanski

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reza M. Salek

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Steinbeck

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Kenneth Haug

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge