Steffen Rickelt
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffen Rickelt.
Cell and Tissue Research | 2009
Werner W. Franke; Steffen Rickelt; Mareike Barth; Sebastian Pieperhoff
Immunocytochemical, electron-, and immunoelectron-microscopical studies have revealed that, in addition to the four major “textbook categories” of cell-cell junctions (gap junctions, tight junctions, adherens junctions, and desmosomes), a broad range of other junctions exists, such as the tiny puncta adhaerentia minima, the taproot junctions (manubria adhaerentia), the plakophilin-2-containing adherens junctions of mesenchymal or mesenchymally derived cell types including malignantly transformed cells, the composite junctions (areae compositae) of the mature mammalian myocardium, the cortex adhaerens of the eye lens, the interdesmosomal “sandwich” or “stud” junctions in the subapical layers of stratified epithelia and the tumors derived therefrom, and the complexus adhaerentes of the endothelial and virgultar cells of the lymph node sinus. On the basis of their sizes and shapes, other morphological criteria, and their specific molecular ensembles, these junctions and the genes that encode them cannot be subsumed under one of the major categories mentioned above but represent special structures in their own right, appear to serve special functions, and can give rise to specific pathological disorders.
Journal of Cell Biology | 2011
Beate K. Straub; Steffen Rickelt; Ralf Zimbelmann; Christine Grund; Caecilia Kuhn; Marcus Iken; Michael Ott; Peter Schirmacher; Werner W. Franke
Contradicting the “cadherin switch” model, mixed E-cadherin–N-cadherin heterodimeric adherens junctions are prevalent in a variety of endodermal cells and endoderm-derived tumors.
International Journal of Cancer | 2009
Steffen Rickelt; Stefanie Winter-Simanowski; Edeltraut Noffz; Caecilia Kuhn; Werner W. Franke
In contrast to the desmosome‐containing epithelial and carcinoma cells, normal and malignantly transformed cells derived from mesenchymal tissues and tumors are connected only by adherens junctions (AJs) containing N‐cadherins and/or cadherin‐11, anchored in a cytoplasmic plaque assembled by α‐ and β‐catenin, plakoglobin, proteins p120 and p0071. Here, we report that the AJs of many malignantly transformed cell lines are characterized by the additional presence of plakophilin‐2 (Pkp2), a protein hitherto known only as a major component of desmosomal plaques, i.e., AJs of epithelia and carcinomatous cells. This massive acquisition of Pkp2 and its integration into AJ plaques of a large number of transformed cell lines is demonstrated with biochemical and immunolocalization techniques. Upregulation of Pkp2 and its integration into AJs has also been noted in some soft tissue tumors insitu and some highly proliferative colonies of cultured mesenchymal stem cells. As Pkp2 has recently been identified as a functionally important major regulatory organizer in AJs and related junctions in epithelial cells and cardiomyocytes, we hypothesize that the integration of Pkp2 into AJs of “soft tissue tumor” cells also can serve functions in the upregulation of proliferation, the promotion of malignant growth in general as well as the close‐packing of diverse kinds of cells and the metastatic behavior of such tumors. We propose to examine its presence in transformed mesenchymal cells and related tumors and to use it as an additional diagnostic criterion.
Cell and Tissue Research | 2008
Steffen Rickelt; Werner W. Franke; Yvette Doerflinger; Sergij Goerdt; Johanna M. Brandner; Wiebke K. Peitsch
In the tissue integration of melanocytes and melanoma cells, an important role is attributed to cell adhesion molecules, notably the cadherins. In cultured melanoma cells, we have previously described a more heterogeneous repertoire of cadherins than normal, including some melanoma subtypes synthesizing the desmosomal cadherin, desmoglein 2, out of the desmosomal context. Using biochemical and immunological characterization of junctional molecules, confocal laser scanning, and electron and immunoelectron microscopy, we now demonstrate homo- and heterotypic cell-cell adhesions of normal epidermal melanocytes. In human epidermis, both in situ and in cell culture, melanocytes and keratinocytes are connected by closely aligned membranes that are interspersed by small puncta adhaerentia containing heterotypic complexes of E- and P-cadherin. Moreover, melanocytes growing in culture often begin to synthesize desmoglein 2, which is dispersed over extended areas of intimate adhesive cell-cell associations. As desmoglein 2 is not found in melanocytes in situ, we hypothesize that its synthesis is correlated with cell proliferation. Indeed, in tissue microarrays, desmoglein 2 has been demonstrated in a sizable subset of nevi and primary melanomas. The biological meanings of these cell-cell adhesion molecule arrangements, the possible diagnostic and prognostic significance of these findings, and the implications of the heterogeneity types of melanomas are discussed.
Dermatology Research and Practice | 2010
Sebastian Pieperhoff; Mareike Barth; Steffen Rickelt; Werner W. Franke
Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.
PLOS ONE | 2014
Hans Heid; Steffen Rickelt; Ralf Zimbelmann; Stefanie Winter; Heiderose Schumacher; Yvette Dörflinger; Caecilia Kuhn; Werner W. Franke
We report on the heterogeneity and diversity of lipid droplets (LDs) in early stages of adipogenesis by elucidating the cell and molecular biology of amphiphilic and cytoskeletal proteins regulating and stabilizing the generation of LDs in human adipose cells. A plethora of distinct and differently sized LDs was detected by a brief application of adipocyte differentiation medium and additional short treatment with oleic acid. Using these cells and highly specific antibodies for LD-binding proteins of the perilipin (PLIN) family, we could distinguish between endogenously derived LDs (endogenous LDs) positive for perilipin from exogenously induced LDs (exogenous LDs) positive for adipophilin, TIP47 and S3-12. Having optimized these stimulation conditions, we used early adipogenic differentiation stages to investigate small-sized LDs and concentrated on LD-protein associations with the intermediate-sized filament (IF) vimentin. This IF protein was described earlier to surround lipid globules, showing spherical, cage-like structures. Consequently - by biochemical methods, by immunofluorescence microscopy and by electron- and immunoelectron microscopy - various stages of emerging lipid globules were revealed with perilipin as linking protein between LDs and vimentin. For this LD-PLIN-Vimentin connection, a model is now proposed, suggesting an interaction of proteins via opposed charged amino acid domains respectively. In addition, multiple sheaths of smooth endoplasmic reticulum cisternae surrounding concentrically nascent LDs are shown. Based on our comprehensive localization studies we present and discuss a novel pathway for the LD formation.
Cell and Tissue Research | 2012
Steffen Rickelt; Sebastian Pieperhoff
In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-β3 (TGFβ3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies.
Modern Pathology | 2010
Steffen Rickelt; Stefania Rizzo; Yvette Doerflinger; Hanswalter Zentgraf; Cristina Basso; Gino Gerosa; Gaetano Thiene; Roland Moll; Werner W. Franke
Using novel antibodies of high avidity to—and specificity for—the constitutive desmosomal plaque protein, plakophilin-2 (Pkp2), in a systematic study of the molecular composition of junctions connecting the cells of soft tissue tumors, we have discovered with immunocytochemical, biochemical and electron microscopical methods, a novel type of adherens junctions in all 32 cardiac myxomata examined. These junctions contain cadherin-11 as their major transmembrane glycoprotein, which we could repeatedly show in colocalization with N-cadherin, anchored in a cytoplasmic plaque formed by α- and β-catenin, together with the further armadillo-type proteins plakoglobin, p120, p0071 and ARVCF. Surprisingly, all adherens junctions of these tumors contained, in addition, another major armadillo protein Pkp2, hitherto known as an obligatory and characteristic constituent of desmosomes in epithelium-derived tumors. We have not detected Pkp2 in a series of noncardiac myxomata studied in parallel. Therefore, we conclude that this acquisition of Pkp2, which we have recently also observed in some mesenchymally derived cells growing in culture, can also occur in tumorigenic transformations in situ. We propose to examine the marker value of Pkp2 in clinical diagnoses of cardiac myxomata and to develop Pkp2-targeted therapeutic reagents.
Journal of Cellular and Molecular Medicine | 2012
Sebastian Pieperhoff; Steffen Rickelt; Hans Heid; William C. Claycomb; Ralf Zimbelmann; Caecilia Kuhn; Stefanie Winter-Simanowski; Christian Kuhn; Norbert Frey; Werner W. Franke
Recently the protein myozap, a 54‐kD polypeptide which is not a member of any of the known cytoskeletal and junctional protein multigene families, has been identified as a constituent of the plaques of the composite junctions in the intercalated disks connecting the cardiomyocytes of mammalian hearts. Using a set of novel, highly sensitive and specific antibodies we now report that myozap is also a major constituent of the cytoplasmic plaques of the adherens junctions (AJs) connecting the endothelial cells of the mammalian blood and lymph vascular systems, including the desmoplakin‐containing complexus adhaerentes of the virgultar cells of lymph node sinus. In light and electron microscopic immunolocalization experiments we show that myozap colocalizes with several proteins of desmosomal plaques as well as with AJ‐specific transmembrane molecules, including VE‐cadherin. In biochemical analyses, rigorous immunoprecipitation experiments have revealed N‐cadherin, desmoplakin, desmoglein‐2, plakophilin‐2, plakoglobin and plectin as very stably bound complex partners. We conclude that myozap is a general component of cell–cell junctions not only in the myocardium but also in diverse endothelia of the blood and lymph vascular systems of adult mammals, suggesting that this protein not only serves a specific role in the heart but also a broader set of functions in the vessel systems. We also propose to use myozap as an endothelial cell type marker in diagnoses.
PLOS ONE | 2013
Hans Heid; Steffen Rickelt; Ralf Zimbelmann; Stefanie Winter; Heiderose Schumacher; Yvette Dörflinger
Lipid droplets (LDs) are spherical accumulations of apolar lipids and other hydrophobic substances and are generally surrounded by a thin cortical layer of specific amphiphilic proteins (APs). These APs segregate the LDs from the mostly polar components of the cytoplasm. We have studied LDs in epithelium-derived cell cultures and in particular characterized proteins from the perilipin (PLIN) gene family - in mammals consisting of the proteins Perilipin, Adipophilin, TIP47, S3-12 and MLDP/OXPAT (PLIN 1-5). Using a large number of newly generated and highly specific mono- and polyclonal antibodies specific for individual APs, and using improved LD isolation methods, we have enriched and characterized APs in greater detail and purity. The majority of lipid-AP complexes could be obtained in the top layer fractions of density gradient centrifugation separations of cultured cells, but APs could also be detected in other fractions within such separations. The differently sized LD complexes were analyzed using various biochemical methods and mass spectrometry as well as immunofluorescence and electron– in particular immunoelectron-microscopy. Moreover, by immunoprecipitation, protein-protein binding assays and by immunoelectron microscopy we identified a direct linkage between LD-binding proteins and the intermediate-sized filaments (IF) cytokeratins 8 and 18 (also designated as keratins K8 and K18). Specifically, in gradient fractions of higher density supposedly containing small LDs, we received as co-precipitations cytidylyl-, palmitoyl- and cholesterol transferases and other specific enzymes involved in lipid metabolism. So far, common proteomic studies have used LDs from top layer fractions only and did not report on these transferases and other enzymes. In addition to findings of short alternating hydrophobic/hydrophilic segments within the PLIN protein family, we propose and discuss a model for the interaction of LD-coating APs with IF proteins.