Steffen Scholpp
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffen Scholpp.
Nature | 2009
Shuizi Rachel Yu; Markus Burkhardt; Matthias Nowak; Jonas Ries; Zdeněk Petrášek; Steffen Scholpp; Petra Schwille; Michael Brand
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Development | 2006
Steffen Scholpp; Olivia Wolf; Michael Brand; Andrew Lumsden
Midway between the anterior neural border and the midbrain-hindbrain boundary, two well-known local signalling centres in the early developing brain, is a further transverse boundary with putative signalling properties– the zona limitans intrathalamica (ZLI). Here, we describe formation of the ZLI in zebrafish in relation to expression of sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), and to development of the forebrain regions that flank the ZLI: the prethalamus and thalamus. We find that enhanced Hh signalling increases the size of prethalamic and thalamic gene expression domains, whereas lack of Hh signalling leads to absence of these domains. In addition, we show that shh and twhh display both unique and redundant functions during diencephalic patterning. Genetic ablation of the basal plate shows that Hh expression in the ZLI alone is sufficient for diencephalic differentiation. Furthermore, acquisition of correct prethalamic and thalamic gene expression is dependent on direct Hh signalling. We conclude that proper maturation of the diencephalon requires ZLI-derived Hh signalling.
Neural Development | 2013
Rebecca Schmidt; Uwe Strähle; Steffen Scholpp
Neurogenesis in the developing central nervous system consists of the induction and proliferation of neural progenitor cells and their subsequent differentiation into mature neurons. External as well as internal cues orchestrate neurogenesis in a precise temporal and spatial way. In the last 20 years, the zebrafish has proven to be an excellent model organism to study neurogenesis in the embryo. Recently, this vertebrate has also become a model for the investigation of adult neurogenesis and neural regeneration. Here, we summarize the contributions of zebrafish in neural development and adult neurogenesis.
Nature Neuroscience | 2010
Coralie Fassier; James A. Hutt; Steffen Scholpp; Andrew Lumsden; Bruno Giros; Fatiha Nothias; Sylvie Schneider-Maunoury; Corinne Houart; Jamilé Hazan
To better understand hereditary spastic paraplegia (HSP), we characterized the function of atlastin, a protein that is frequently involved in juvenile forms of HSP, by analyzing loss- and gain-of-function phenotypes in the developing zebrafish. We found that knockdown of the gene for atlastin (atl1) caused a severe decrease in larval mobility that was preceded by abnormal architecture of spinal motor axons and was associated with a substantial upregulation of the bone morphogenetic protein (BMP) signaling pathway. Overexpression analyses confirmed that atlastin inhibits BMP signaling. In primary cultures of zebrafish spinal neurons, Atlastin partially colocalized with type I BMP receptors in late endosomes distributed along neurites, which suggests that atlastin may regulate BMP receptor trafficking. Finally, genetic or pharmacological inhibition of BMP signaling was sufficient to rescue the loss of mobility and spinal motor axon defects of atl1 morphants, emphasizing the importance of fine-tuning the balance of BMP signaling for vertebrate motor axon architecture and stability.
Nature Communications | 2015
Eliana Stanganello; Anja I. H. Hagemann; Benjamin Mattes; Claude Sinner; Dana Meyen; Sabrina Weber; Alexander Schug; Erez Raz; Steffen Scholpp
Paracrine Wnt/β-catenin signalling is important during developmental processes, tissue regeneration and stem cell regulation. Wnt proteins are morphogens, which form concentration gradients across responsive tissues. Little is known about the transport mechanism for these lipid-modified signalling proteins in vertebrates. Here we show that Wnt8a is transported on actin-based filopodia to contact responding cells and activate signalling during neural plate formation in zebrafish. Cdc42/N-Wasp regulates the formation of these Wnt-positive filopodia. Enhanced formation of filopodia increases the effective signalling range of Wnt by facilitating spreading. Consistently, reduction in filopodia leads to a restricted distribution of the ligand and a limited signalling range. Using a simulation, we provide evidence that such a short-range transport system for Wnt has a long-range signalling function. Indeed, we show that a filopodia-based transport system for Wnt8a controls anteroposterior patterning of the neural plate during vertebrate gastrulation.
Trends in Neurosciences | 2010
Steffen Scholpp; Andrew Lumsden
The thalamus is a central brain region that plays a crucial role in distributing incoming sensory information to appropriate regions of the cortex. The thalamus develops in the posterior part of the embryonic forebrain, where early cell fate decisions are controlled by a local signaling center – the mid-diencephalic organizer – which forms at the boundary between prospective prethalamus and thalamus. In this review we discuss recent observations of early thalamic development in zebrafish, chick, and mouse embryos, that reveal a conserved set of interactions between homeodomain transcription factors. These interactions position the organizer along the neuraxis. The most prominent of the organizers signals, Sonic hedgehog, is necessary for conferring regional identity on the prethalamus and thalamus and for patterning their differentiation.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Steffen Scholpp; Alessio Delogu; Jonathan Gilthorpe; Daniela Peukert; Simone Schindler; Andrew Lumsden
During vertebrate brain development, the onset of neuronal differentiation is under strict temporal control. In the mammalian thalamus and other brain regions, neurogenesis is regulated also in a spatially progressive manner referred to as a neurogenetic gradient, the underlying mechanism of which is unknown. Here we describe the existence of a neurogenetic gradient in the zebrafish thalamus and show that the progression of neurogenesis is controlled by dynamic expression of the bHLH repressor her6. Members of the Hes/Her family are known to regulate proneural genes, such as Neurogenin and Ascl. Here we find that Her6 determines not only the onset of neurogenesis but also the identity of thalamic neurons, marked by proneural and neurotransmitter gene expression: loss of Her6 leads to premature Neurogenin1-mediated genesis of glutamatergic (excitatory) neurons, whereas maintenance of Her6 leads to Ascl1-mediated production of GABAergic (inhibitory) neurons. Thus, the presence or absence of a single upstream regulator of proneural gene expression, Her6, leads to the establishment of discrete neuronal domains in the thalamus.
Development Genes and Evolution | 2004
Steffen Scholpp; Casper Groth; Claudia Lohs; Michael Lardelli; Michael Brand
FGFR1 is an important signalling molecule during embryogenesis and in adulthood. FGFR1 mutations in human may lead to developmental defects and pathological conditions, including cancer and Alzheimer’s disease. Here, we describe cloning and expression analysis of the zebrafish fibroblast growth factor receptor 1 (fgfr1). Initially, fgfr1 is expressed in the adaxial mesoderm with transcripts distinctly localised to the anterior portion of each half-somite. Hereupon, fgfr1 is also strongly expressed in the otic vesicles, branchial arches and the brain, especially at the midbrain-hindbrain boundary (MHB). The expression patterns of fgfr1 and fgf8 are strikingly similar and knock-down of fgfr1 phenocopies many aspects observed in the fgf8 mutant acerebellar, suggesting that Fgf8 exerts its function mainly by binding to FgfR1.
Development | 2003
Steffen Scholpp; Claudia Lohs; Michael Brand
Specification of the forebrain, midbrain and hindbrain primordia occurs during gastrulation in response to signals that pattern the gastrula embryo. Following establishment of the primordia, each brain part is thought to develop largely independently from the others under the influence of local organizing centers like the midbrain-hindbrain boundary (MHB, or isthmic) organizer. Mechanisms that maintain the integrity of brain subdivisions at later stages are not yet known. To examine such mechanisms in the anterior neural tube, we have studied the establishment and maintenance of the diencephalic-mesencephalic boundary (DMB). We show that maintenance of the DMB requires both the presence of a specified midbrain and a functional MHB organizer. Expression of pax6.1, a key regulator of forebrain development, is posteriorly suppressed by the Engrailed proteins, Eng2 and Eng3. Mis-expression of eng3 in the forebrain primordium causes downregulation of pax6.1, and forebrain cells correspondingly change their fate and acquire midbrain identity. Conversely, in embryos lacking both eng2 and eng3, the DMB shifts caudally into the midbrain territory. However, a patch of midbrain tissue remains between the forebrain and the hindbrain primordia in such embryos. This suggests that an additional factor maintains midbrain cell fate. We find that Fgf8 is a candidate for this signal, as it is both necessary and sufficient to repress pax6.1 and hence to shift the DMB anteriorly independently of the expression status of eng2/eng3. By examining small cell clones that are unable to receive an Fgf signal, we show that cells in the presumptive midbrain neural plate require an Fgf signal to keep them from following a forebrain fate. Combined loss of both Eng2/Eng3 and Fgf8 leads to complete loss of midbrain identity, resulting in fusion of the forebrain and the hindbrain primordia. Thus, Eng2/Eng3 and Fgf8 are necessary to maintain midbrain identity in the neural plate and thereby position the DMB. This provides an example of a mechanism needed to maintain the subdivision of the anterior neural plate into forebrain and midbrain.
PLOS Biology | 2011
Daniela Peukert; Sabrina Weber; Andrew Lumsden; Steffen Scholpp
Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.