Steffen Stenger
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffen Stenger.
Journal of Immunology | 2007
Philip T. Liu; Steffen Stenger; Dominic Tang; Robert L. Modlin
Host defense against intracellular pathogens depends upon innate and adaptive antimicrobial effector pathways. TLR2/1-activation of monocytes leads to the vitamin D-dependent production of cathelicidin and, at the same time, an antimicrobial activity against intracellular Mycobacterium tuberculosis. To determine whether induction of cathelicidin was required for the vitamin D-triggered antimicrobial activity, the human monocytic cell line THP-1 was infected with M. tuberculosis H37Ra and then activated with the active vitamin D hormone 1,25-dihydroxyvitamin D3 (1,25D3). 1,25D3 stimulation resulted in antimicrobial activity against intracellular M. tuberculosis and expression of cathelicidin mRNA and protein. Using small interfering RNA (siRNA) specific for cathelicidin, 1,25D3-induced cathelicidin mRNA and protein expressions were efficiently knocked down, whereas a nonspecific siRNA control had little effect. Finally, 1,25D3-induced antimicrobial activity was completely inhibited in the presence of siRNA against cathelicidin, instead leading to enhanced intracellular growth of mycobacteria. These data demonstrate that cathelicidin is required for the 1,25D3-triggered antimicrobial activity against intracellular M. tuberculosis.
Journal of Immunology | 2010
Hanne Schoenen; Barbara Bodendorfer; Kelly J Hitchens; Silvia Manzanero; Kerstin Werninghaus; Falk Nimmerjahn; Else Marie Agger; Steffen Stenger; Peter Andersen; Jürgen Ruland; Gordon D. Brown; Christine A. Wells; Roland Lang
The mycobacterial cord factor trehalose-6,6-dimycolate (TDM) and its synthetic analog trehalose-6,6-dibehenate (TDB) are potent adjuvants for Th1/Th17 vaccination that activate Syk-Card9 signaling in APCs. In this study, we have further investigated the molecular mechanism of innate immune activation by TDM and TDB. The Syk-coupling adapter protein FcRγ was essential for macrophage activation and Th17 adjuvanticity. The FcRγ-associated C-type lectin receptor Mincle was expressed in macrophages and upregulated by TDM and TDB. Recombinant Mincle-Fc fusion protein specifically bound to the glycolipids. Genetic ablation of Mincle abolished TDM/TDB-induced macrophage activation and induction of T cell immune responses to a tuberculosis subunit vaccine. Macrophages lacking Mincle or FcRγ were impaired in the inflammatory response to Mycobacterium bovis bacillus Calmette-Guérin. These results establish that Mincle is a key receptor for the mycobacterial cord factor and controls the Th1/Th17 adjuvanticity of TDM and TDB.
Science Translational Medicine | 2011
Mario Fabri; Steffen Stenger; Dong Min Shin; Jae Min Yuk; Philip T. Liu; Susan Realegeno; Hye Mi Lee; Stephan R. Krutzik; Mirjam Schenk; Peter A. Sieling; Rosane M. B. Teles; Dennis Montoya; Shankar S. Iyer; Heiko Bruns; David M. Lewinsohn; Bruce W. Hollis; Martin Hewison; John S. Adams; Andreas Steinmeyer; Ulrich Zügel; Genhong Cheng; Eun Kyeong Jo; Barry R. Bloom; Robert L. Modlin
Vitamin D is required for both innate and adaptive immunity to tuberculosis. The Sunny Side of Antimicrobial Response Nearly one-third of the world’s population is thought to be infected with Mycobacterium tuberculosis, which causes a potentially fatal lung disease in untreated patients. Although most M. tuberculosis infections can be treated by antibiotic therapy, the burden of infection is especially high in immunodeficient (HIV+) patients and individuals from developing nations. Moreover, drug-resistant M. tuberculosis is increasingly prevalent. Yet, most humans with M. tuberculosis infection are asymptomatic, perhaps because of successful immunological control. Understanding the mechanisms behind immune control of M. tuberculosis infection may pinpoint potential new therapeutic avenues. Now, Fabri et al. examine the antimicrobial function of M. tuberculosis–infected human macrophages. The authors found that cells from the adaptive immune system—T cells—governed bacterial control by releasing the cytokine interferon-γ (IFN-γ), which then activated infected macrophages, inciting the cells to attack the invading M. tuberculosis. This activation depended on the presence of vitamin D, a fat-soluble prohormone thought to be beneficial for everything from bone health to cancer therapy. Indeed, this antimicrobial response was not seen with macrophages maintained in human sera from subjects with insufficient vitamin D levels. Vitamin D3 has been used historically to treat M. tuberculosis infection, but its effects have not been thoroughly tested in clinical trials. This study suggests that increasing serum levels of vitamin D, whether through supplementation or increased sun exposure, should improve the human immune response to M. tuberculosis and supports further testing of vitamin D in the clinic. Control of tuberculosis worldwide depends on our understanding of human immune mechanisms, which combat the infection. Acquired T cell responses are critical for host defense against microbial pathogens, yet the mechanisms by which they act in humans remain unclear. We report that T cells, by the release of interferon-γ (IFN-γ), induce autophagy, phagosomal maturation, the production of antimicrobial peptides such as cathelicidin, and antimicrobial activity against Mycobacterium tuberculosis in human macrophages via a vitamin D–dependent pathway. IFN-γ induced the antimicrobial pathway in human macrophages cultured in vitamin D–sufficient sera, but not in sera from African-Americans that have lower amounts of vitamin D and who are more susceptible to tuberculosis. In vitro supplementation of vitamin D–deficient serum with 25-hydroxyvitamin D3 restored IFN-γ–induced antimicrobial peptide expression, autophagy, phagosome-lysosome fusion, and antimicrobial activity. These results suggest a mechanism in which vitamin D is required for acquired immunity to overcome the ability of intracellular pathogens to evade macrophage-mediated antimicrobial responses. The present findings underscore the importance of adequate amounts of vitamin D in all human populations for sustaining both innate and acquired immunity against infection.
Journal of Immunology | 2003
Joshua R. Bleharski; Viviane Kiessler; Cecilia Buonsanti; Peter A. Sieling; Steffen Stenger; Marco Colonna; Robert L. Modlin
Triggering receptor expressed on myeloid cells (TREM)-1 is a cell surface molecule expressed on neutrophils and monocytes implicated in the propagation of the inflammatory response. To further characterize the function of this molecule in different phases of the immune response, we examined TREM-1 in the context of host defense against microbial pathogens. In primary human monocytes TREM-1 activation did not trigger innate antimicrobial pathways directed against intracellular Mycobacterium tuberculosis, and only minimally improved phagocytosis. However, activation of TREM-1 on monocytes did drive robust production of proinflammatory chemokines such as macrophage inflammatory protein-1α and IL-8. Engagement of TREM-1 in combination with microbial ligands that activate Toll-like receptors also synergistically increased production of the proinflammatory cytokines TNF-α and GM-CSF, while inhibiting production of IL-10, an anti-inflammatory cytokine. Expression of TREM-1 was up-regulated in response to TLR activation, an effect further enhanced by GM-CSF and TNF-α but inhibited by IL-10. Functionally, primary monocytes differentiated into immature dendritic cells following activation through TREM-1, evidenced by higher expression of CD1a, CD86, and MHC class II molecules. These cells had an improved ability to elicit T cell proliferation and production of IFN-γ. Our data suggest that activation of TREM-1 on monocytes participates during the early-induced and adaptive immune responses involved in host defense against microbial challenges.
Journal of Clinical Investigation | 2009
Heiko Bruns; Christoph Meinken; Philipp Schauenberg; Georg Härter; Peter Kern; Robert L. Modlin; Christian Antoni; Steffen Stenger
The incidence of tuberculosis is increased during treatment of autoimmune diseases with anti-TNF antibodies. This is a significant clinical complication, but also provides a unique model to study immune mechanisms in human tuberculosis. Given the key role for cell-mediated immunity in host defense against Mycobacterium tuberculosis, we hypothesized that anti-TNF treatment impairs T cell-directed antimicrobial activity. Anti-TNF therapy reduced the expression in lymphocytes of perforin and granulysin, 2 components of the T cell-mediated antimicrobial response to intracellular pathogens. Specifically, M. tuberculosis-reactive CD8+CCR7-CD45RA+ effector memory T cells (TEMRA cells) expressed the highest levels of granulysin, lysed M. tuberculosis, and infected macrophages and mediated an antimicrobial activity against intracellular M. tuberculosis. Furthermore, TEMRA cells expressed cell surface TNF and bound the anti-TNF therapeutic infliximab in vitro, making them susceptible to complement-mediated lysis. Immune therapy with anti-TNF was associated with reduced numbers of CD8+ TEMRA cells and decreased antimicrobial activity against M. tuberculosis, which could be rescued by the addition of CD8+ TEMRA cells. These results suggest that anti-TNF therapy triggers a reduction of CD8+ TEMRA cells with antimicrobial activity against M. tuberculosis, providing insight into the mechanism whereby key effector T cell subsets contribute to host defense against tuberculosis.
Science | 2013
Rosane M. B. Teles; Thomas G. Graeber; Stephan R. Krutzik; Dennis Montoya; Mirjam Schenk; Delphine J. Lee; Evangelia Komisopoulou; Kindra M. Kelly-Scumpia; Rene Chun; Shankar S. Iyer; Euzenir Nunes Sarno; Thomas H. Rea; Martin Hewison; John S. Adams; Stephen J. Popper; David A. Relman; Steffen Stenger; Barry R. Bloom; Genhong Cheng; Robert L. Modlin
Interfering with Interferons Infections with Mycobacteria, including Mycobacterium leprae or M. tuberculosis, vary substantially in their clinical presentation. For instance, in some cases of M. leprae, the infection is self-healing with very few lesions. In contrast, some people experience the disseminated form, where skin lesions abound and bacteria are abundant. In patients infected with M. leprae, Teles et al. (p. 1448, published online 28 February) found that the disseminated disease associates with a type I interferon gene signature, whereas the self-healing form associates with a type II interferon gene signature. In cultured cells, type I interferon and its downstream signaling cascade inhibited the antimicrobial response induced by type II interferons, providing a potential explanation for why robust disease rather than protection is seen in some cases of infection. Disseminated Mycobacterium leprae infection is associated with blockade of the antimicrobial response by type I interferons. Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D–dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ–induced macrophage vitamin D–dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.
Journal of Experimental Medicine | 2004
Martine Gilleron; Steffen Stenger; Zaima Mazorra; Frederick Wittke; Sabrina Mariotti; Gabriele Böhmer; Jacques Prandi; Lucia Mori; Germain Puzo; Gennaro De Libero
Mycobacterial lipids comprise a heterogeneous group of molecules capable of inducing T cell responses in humans. To identify novel antigenic lipids and increase our understanding of lipid-mediated immune responses, we established a panel of T cell clones with different lipid specificities. Using this approach we characterized a novel lipid antigen belonging to the group of diacylated sulfoglycolipids purified from Mycobacterium tuberculosis. The structure of this sulfoglycolipid was identified as 2-palmitoyl or 2-stearoyl-3-hydroxyphthioceranoyl-2′-sulfate-α-α′-d-trehalose (Ac2SGL). Its immunogenicity is dependent on the presence of the sulfate group and of the two fatty acids. Ac2SGL is mainly presented by CD1b molecules after internalization in a cellular compartment with low pH. Ac2SGL-specific T cells release interferon γ, efficiently recognize M. tuberculosis–infected cells, and kill intracellular bacteria. The presence of Ac2SGL-responsive T cells in vivo is strictly dependent on previous contact with M. tuberculosis, but independent from the development of clinically overt disease. These properties identify Ac2SGL as a promising candidate to be tested in novel vaccines against tuberculosis.
Journal of Immunology | 2006
Belinda H. Tan; Christoph Meinken; Max Bastian; Heiko Bruns; Annaliza Legaspi; Maria Teresa Ochoa; Stephan R. Krutzik; Barry R. Bloom; Tomas Ganz; Robert L. Modlin; Steffen Stenger
A key target of many intracellular pathogens is the macrophage. Although macrophages can generate antimicrobial activity, neutrophils have been shown to have a key role in host defense, presumably by their preformed granules containing antimicrobial agents. Yet the mechanism by which neutrophils can mediate antimicrobial activity against intracellular pathogens such as Mycobacterium tuberculosis has been a long-standing enigma. We demonstrate that apoptotic neutrophils and purified granules inhibit the growth of extracellular mycobacteria. Phagocytosis of apoptotic neutrophils by macrophages results in decreased viability of intracellular M. tuberculosis. Concomitant with uptake of apoptotic neutrophils, granule contents traffic to early endosomes, and colocalize with mycobacteria. Uptake of purified granules alone decreased growth of intracellular mycobacteria. Therefore, the transfer of antimicrobial peptides from neutrophils to macrophages provides a cooperative defense strategy between innate immune cells against intracellular pathogens and may complement other pathways that involve delivery of antimicrobial peptides to macrophages.
Journal of Immunology | 2003
Jennifer L. Gansert; Viviane Kieβler; Matthias Engele; Frederick Wittke; Martin Röllinghoff; Alan M. Krensky; Steven A. Porcelli; Robert L. Modlin; Steffen Stenger
Human NKT cells are a unique subset of T cells that express an invariant Vα24 TCR that recognizes the nonclassical Ag-presenting molecule CD1d. Activation of NKT cells is greatly augmented by the marine sponge-derived glycolipid α-galactosylceramide (αGalCer). Because human monocyte-derived cells express CD1d and can harbor the intracellular pathogen Mycobacterium tuberculosis, we asked whether the addition of αGalCer could be used to induce effector functions of NKT cells against infected monocytes, macrophages, and monocyte-derived dendritic cells. NKT cells secreted IFN-γ, proliferated, and exerted lytic activity in response to αGalCer-pulsed monocyte-derived cells. Importantly, αGalCer-activated NKT cells restricted the growth of intracellular M. tuberculosis in a CD1d-dependent manner. NKT cells that exhibited antimycobacterial activity also expressed granulysin, an antimicrobial peptide shown to mediate an antimycobacterial activity through perturbation of the mycobacterial surface. Degranulation of NKT cells resulted in depletion of granulysin and abrogation of antimycobacterial activity. The detection of CD1d in granulomas of tuberculosis patients supports the potential interaction of NKT cells with CD1d-expressing cells at the site of disease activity. These studies provide evidence that αGalCer-activated CD1d-restricted T cells can participate in human host defense against M. tuberculosis infection.
Journal of Immunology | 2008
Stephan R. Krutzik; Martin Hewison; Philip T. Liu; Juan Antonio Robles; Steffen Stenger; John S. Adams; Robert L. Modlin
An essential function of the innate immune system is to directly trigger antimicrobial mechanisms to defend against invading pathogens. In humans, one such pathway involves activation by TLR2/1L leading to the vitamin D-dependent induction of antimicrobial peptides. In this study, we found that TLR2/1-induced IL-15 was required for induction of CYP27b1, the VDR and the downstream antimicrobial peptide cathelicidin. Although both IL-15 and IL-4 triggered macrophage differentiation, only IL-15 was sufficient by itself to induce CYP27b1 and subsequent bioconversion of 25-hydroxyvitamin D3 (25D3) into bioactive 1,25D3, leading to VDR activation and induction of cathelicidin. Finally, IL-15-differentiated macrophages could be triggered by 25D3 to induce an antimicrobial activity against intracellular Mycobacterium tuberculosis. Therefore, IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway.