Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steffi Hansen is active.

Publication


Featured researches published by Steffi Hansen.


Dermato-endocrinology | 2009

Nanoparticles and their interactions with the dermal barrier

Marc Schneider; Frank Stracke; Steffi Hansen; Ulrich F. Schaefer

The dermal application of drugs is promising due to the ease of application. In this context nano-scale carrier systems were already evaluated in several studies with respect to the skin interaction and the impact on drug penetration. At the same time the upcoming production of engineered nano-scale materials requires a thorough safety evaluation. Drug delivery as well as risk assessment depends crucially on the ability of such carriers to overcome the skin barrier and reach deeper tissue layers. Therefore, the interaction of nanoparticles with skin and especially skin models is an intriguing field. However, the data obtained do not show a clear image on the effect of nano-carriers. Especially the penetration of such particles is an open and controversially discussed topic. The literature reports different results mainly on pig or murine skin showing strong penetration (pig and mouse) or the opposite. Looking only at the sizes of the particles also no conclusive picture can be obtained. Nevertheless, size is regarded to play an important role for skin penetration. Furthermore, the state of the skin influences penetration (hydration) and the mechanical stress is of outmost importance.


Vaccine | 2013

Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization.

Ankit Mittal; Anne S. Raber; Ulrich F. Schaefer; Sebastian Weissmann; Thomas Ebensen; Kai Schulze; Carlos A. Guzmán; Claus-Michael Lehr; Steffi Hansen

Transfollicular vaccination aims to reach the peri-follicular antigen presenting cells without impairing the stratum corneum (SC) barrier. This would be an optimal vaccination strategy under critical hygienic conditions. Nanoparticles (NPs) are the ideal vehicles for transfollicular delivery of vaccines as they are able to (i) penetrate deeper into the hair follicles than molecules in solution, (ii) can help to stabilize protein based antigen and (iii) improve and modulate the immune response. This study investigates the potential of transfollicular delivery of polymeric NPs using ovalbumin (OVA) as a model antigen. NPs were prepared by a double emulsion method from pharmaceutically well characterized biocompatible and biodegradable polymers poly(lactide-co-glycolide) (PLGA) or chitosan-coated PLGA (Chit-PLGA) using polyvinyl alcohol as stabilizer. The NP formulations are available as freeze dried product which can be re-constituted with water or cell culture medium before use to yield any desired OVA/NP concentration. OVA was protected from cleavage or aggregation inside the NPs and retained its biological activity to 74% (PLGA) and 64% (Chit-PLGA). Thus, when applying a typical dose of 8.5 μl/cm(2) NP formulation (50mg NPs/ml, 54.3±0.047 and 66.5±0.044 μg OVA/mg NPs for PLGA and Chit-PLGA NPs, respectively) an effective dose of 17 μg/cm(2) (PLGA) or 18 μg/cm(2) (Chit-PLGA) of active OVA is administered. In a cell culture assay encapsulated OVA stimulated the proliferation of CD4+ (PLGA and Chit-PLGA) and CD8+ T-cells (only Chit-PLGA) to a larger extent than OVA in solution. An adoptive transfer experiment demonstrated that the model antigen OVA can be delivered via the transfollicular route. This preliminary experiment is a proof of concept that by this transfollicular immunization approach it is possible to deliver antigens, thereby stimulating antigen-specific T cells. Both NP formulations improved the delivery efficiency of OVA into the hair follicles on excised pig ears by a factor of 2-3 compared to OVA solution. This delivery efficiency could further be increased by increasing the number of NPs applied per skin area by a factor of ≈2-2.4. Consequently formulation of OVA into PLGA and Chit-PLGA NPs may offer to reduce the dose which needs to be applied for transfollicular immunization.


Journal of Controlled Release | 2014

Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm.

Anne S. Raber; Ankit Mittal; J. Schäfer; U. Bakowsky; J. Reichrath; T. Vogt; Ulrich F. Schaefer; Steffi Hansen; Claus-Michael Lehr

Drug delivery via the hair follicle (HF) especially with nanoparticles (NP) recently gained attention due to a depot effect and facilitated absorption conditions within the lower HF. With the prospect of transdermal drug delivery, it is of interest to optimize the follicular uptake of NP. In this study, a method was developed to quantify NP uptake into HF and applied in vitro in a pig ear model and in vivo in human volunteers. The influence of NP material on HF uptake was investigated using fluorescence-labeled NP based on poly(D,L-lactide-co-glycolide) (PLGA). All NP had similar hydrodynamic sizes (163-170 nm) but different surface modifications: (i) plain PLGA, (ii) chitosan-coated PLGA (Chit.-PLGA), and (iii) Chit.-PLGA coated with different phospholipids (PL) (DPPC (100), DPPC:Chol (85:15), and DPPC:DOTAP (92:8). Differential stripping was performed, including complete mass balance. The samples were extracted for fluorescence quantification. An effect of the PL coating on follicular uptake was observed as DPPC (100) and DPPC:DOTAP (92:8) penetrated into HF to a higher extent than the other tested NP. The effect was observed both in the pig ear model as well as in human volunteers, although it was statistically significant only in the in vitro model. An excellent in vitro-in vivo correlation (IVIVC, r(2)=0.987) between both models was demonstrated, further supporting the suitability of the pig ear model as a surrogate for the in vivo situation in humans for quantifying NP uptake into HF. These findings may help to optimize NP for targeting the HF and to improve transdermal delivery.


Microbial Biotechnology | 2012

Nanoparticles for transcutaneous vaccination.

Steffi Hansen; Claus-Michael Lehr

The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano‐vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle‐free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra‐flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed.


Journal of Pharmaceutical Sciences | 2011

An Extended Database of Keratin Binding

Steffi Hansen; Dominik Selzer; Ulrich F. Schaefer; Gerald B. Kasting

Diffusion modeling of dermal absorption relies in large part on high quality input data. Currently, estimates of corneocyte-phase partitioning are based on an analysis of a dataset of limited size and diversity. Therefore, we have updated and broadened the analysis. For this purpose, binding coefficients to different keratins, namely, bovine hoof and horn, human delipidized callus, human delipidized stratum corneum (SC), human nail, human hair, and sheep wool were collected from the literature. In addition, binding coefficients to hoof/horn and delipidized SC were measured for eight hydrophilic compounds including three ionizable compounds that were measured at different pH values. Important results are: (i) only hoof/horn, callus, and delipidized SC are suitable keratins for estimating corneocyte protein binding; (ii) binding coefficients to hoof/horn, callus, and delipidized SC can be predicted from the octanol-water partition coefficients log K(o/w) confirming the analysis of the limited dataset; (iii) binding of ionizable compounds can be predicted by correcting log K(o/w) for pH; (iv) the correlation derived for the extended database is steeper than the relationship derived for the limited dataset. This has consequences for the estimates of SC partition and diffusion coefficients for diffusion modeling of dermal absorption. .


Pharmaceutical Research | 2009

The Role of Corneocytes in Skin Transport Revised—A Combined Computational and Experimental Approach

Steffi Hansen; Arne Naegel; Michael Heisig; Gabriel Wittum; Dirk Neumann; Karl-Heinz Kostka; Peter Meiers; Claus-Michael Lehr; Ulrich F. Schaefer

PurposeTo investigate mechanisms of compound–corneocyte interactions in a combined experimental and theoretical approach.Materials and MethodsExperimental methods are presented to investigate compound–corneocyte interactions in terms of dissolution within water of hydration and protein binding and to quantify the extent of the concurrent mechanisms. Results are presented for three compounds: caffeine, flufenamic acid, and testosterone. Two compartmental stratum corneum models M1 and M2 are formulated based on experimentally determined input parameters describing the affinity to lipid, proteins and water. M1 features a homogeneous protein compartment and considers protein interactions only via intra-corneocyte water. In M2 the protein compartment is sub-divided into a cornified envelope compartment interacting with inter-cellular lipids and a keratin compartment interacting with water.ResultsFor the non-protein binding caffeine the impact of the aqueous compartment on stratum corneum partitioning is overestimated but is successfully modeled after introducing a bound water fraction that is non-accessible for compound dissolution. For lipophilic, keratin binding compounds (flufenamic acid, testosterone) only M2 correctly predicts a concentration dependence of stratum corneum partition coefficients.ConclusionsLipophilic and hydrophilic compounds interact with corneocytes. Interactions of lipophilic compounds are probably confined to the corneocyte surface. Interactions with intracellular keratin may be limited by their low aqueous solubility.


Archive | 2008

Models for Skin Absorption and Skin Toxicity Testing

Ulrich F. Schaefer; Steffi Hansen; Marc Schneider; Claus-Michael Lehr

This chapter includes information about models for skin absorption testing and skin toxicity testing in a condensed form. At first, the structure and function of human skin is described discussing the contribution of the different skin layers and skin appendages to skin absorption. Moreover, various skin absorption pathways are discussed. Particular attention is paid to the strategies used to test skin invasion. This chapter includes in vivo, ex vivo as well as in vitro experimental setups whose advantages and disadvantages are presented. Finally skin toxicity is addressed paying attention to skin sensitization, skin irritation and corrosion, and skin phototoxicity testing. Altogether an up-to-date status on techniques concerning skin invasion testing and skin toxicity testing is provided.


Journal of Biomedical Optics | 2012

Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

Lutz Franzen; Christiane Mathes; Steffi Hansen; Maike Windbergs

Abstract. Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.


International Journal of Pharmaceutics | 2014

Development of artemether-loaded nanostructured lipid carrier (NLC) formulation for topical application.

Petra Obioma Nnamani; Steffi Hansen; Maike Windbergs; Claus-Michael Lehr

NLC topical formulation as an alternative to oral and parenteral (IM) delivery of artemether (ART), a poorly water-soluble drug was designed. A Phospholipon 85G-modified Gelucire 43/01 based NLC formulation containing 75% Transcutol was chosen from DSC studies and loaded with gradient concentration of ART (100-750 mg). ART-loaded NLCs were stable (-22 to -40 mV), polydispersed (0.4-0.7) with d90 size distribution range of 247-530 nm without microparticles up to one month of storage. The encapsulation efficiency (EE%) for ART in the NLC was concentration independent as 250 mg of ART loading achieved ∼61%. DSC confirmed molecular dispersion of ART due to low matrix crystallinity (0.028J/g). Ex vivo study showed detectable ART amounts after 20h which gradually increased over 48h achieving ∼26% cumulative amount permeated irrespective of the applied dose. This proves that ART permeates excised human epidermis, where the current formulation served as a reservoir to gradually control drug release over an extended period of time. Full thickness skin study therefore may confirm if this is a positive signal to hope for a topical delivery system of ART.


Human Vaccines & Immunotherapeutics | 2013

Particle based vaccine formulations for transcutaneous immunization

Ankit Mittal; Anne S. Raber; Claus-Michael Lehr; Steffi Hansen

Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.

Collaboration


Dive into the Steffi Hansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arne Naegel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Wittum

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Michael Heisig

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge