Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stepan Melnyk is active.

Publication


Featured researches published by Stepan Melnyk.


Journal of Biological Chemistry | 2000

Increase in Plasma Homocysteine Associated with Parallel Increases in Plasma S-Adenosylhomocysteine and Lymphocyte DNA Hypomethylation*

Ping Yi; Stepan Melnyk; Marta Pogribna; Igor Pogribny; R. Jean Hine; S. Jill James

S-Adenosylmethionine andS-adenosylhomocysteine (SAH), as the substrate and product of essential cellular methyltransferase reactions, are important metabolic indicators of cellular methylation status. Chronic elevation of SAH, secondary to the homocysteine-mediated reversal of the SAH hydrolase reaction, reduces methylation of DNA, RNA, proteins, and phospholipids. High affinity binding of SAH to the active site of cellular methyltransferases results in product inhibition of the enzyme. Using a sensitive new high pressure liquid chromatography method with coulometric electrochemical detection, plasma SAH levels in healthy young women were found to increase linearly with mild elevation in homocysteine levels (r = 0.73; p < 0.001); however,S-adenosylmethionine levels were not affected. Plasma SAH levels were positively correlated with intracellular lymphocyte SAH levels (r = 0.81; p < 0.001) and also with lymphocyte DNA hypomethylation (r = 0.74,p < 0.001). These results suggest that chronic elevation in plasma homocysteine levels, such as those associated with nutritional deficiencies or genetic polymorphisms in the folate pathway, may have an indirect and negative effect on cellular methylation reactions through a concomitant increase in intracellular SAH levels.


American Journal of Medical Genetics | 2006

Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism

S. Jill James; Stepan Melnyk; Stefanie Jernigan; Mario A. Cleves; Charles H. Halsted; Donna H. Wong; Paul Cutler; Kenneth Bock; Marvin Boris; J. Jeffrey Bradstreet; Sidney M. Baker; David W. Gaylor

Autism is a behaviorally defined neurodevelopmental disorder usually diagnosed in early childhood that is characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal. Although both genetic and environmental factors are thought to be involved, none have been reproducibly identified. The metabolic phenotype of an individual reflects the influence of endogenous and exogenous factors on genotype. As such, it provides a window through which the interactive impact of genes and environment may be viewed and relevant susceptibility factors identified. Although abnormal methionine metabolism has been associated with other neurologic disorders, these pathways and related polymorphisms have not been evaluated in autistic children. Plasma levels of metabolites in methionine transmethylation and transsulfuration pathways were measured in 80 autistic and 73 control children. In addition, common polymorphic variants known to modulate these metabolic pathways were evaluated in 360 autistic children and 205 controls. The metabolic results indicated that plasma methionine and the ratio of S‐adenosylmethionine (SAM) to S‐adenosylhomocysteine (SAH), an indicator of methylation capacity, were significantly decreased in the autistic children relative to age‐matched controls. In addition, plasma levels of cysteine, glutathione, and the ratio of reduced to oxidized glutathione, an indication of antioxidant capacity and redox homeostasis, were significantly decreased. Differences in allele frequency and/or significant gene–gene interactions were found for relevant genes encoding the reduced folate carrier (RFC 80G > A), transcobalamin II (TCN2 776G > C), catechol‐O‐methyltransferase (COMT 472G > A), methylenetetrahydrofolate reductase (MTHFR 677C > T and 1298A > C), and glutathione‐S‐transferase (GST M1). We propose that an increased vulnerability to oxidative stress (endogenous or environmental) may contribute to the development and clinical manifestations of autism.


Journal of Nutrition | 2002

Elevation in S-Adenosylhomocysteine and DNA Hypomethylation: Potential Epigenetic Mechanism for Homocysteine-Related Pathology

S. Jill James; Stepan Melnyk; Marta Pogribna; Igor P. Pogribny; Marie A. Caudill

Chronic nutritional deficiencies in folate, choline, methionine, vitamin B-6 and/or vitamin B-12 can perturb the complex regulatory network that maintains normal one-carbon metabolism and homocysteine homeostasis. Genetic polymorphisms in these pathways can act synergistically with nutritional deficiencies to accelerate metabolic pathology associated with occlusive heart disease, birth defects and dementia. A major unanswered question is whether homocysteine is causally involved in disease pathogenesis or whether homocysteinemia is simply a passive and indirect indicator of a more complex mechanism. S-Adenosylmethionine and S-adenosylhomocysteine (SAH), as the substrate and product of methyltransferase reactions, are important metabolic indicators of cellular methylation status. Chronic elevation in homocysteine levels results in parallel increases in intracellular SAH and potent product inhibition of DNA methyltransferases. SAH-mediated DNA hypomethylation and associated alterations in gene expression and chromatin structure may provide new hypotheses for pathogenesis of diseases related to homocysteinemia.


Journal of Nutritional Biochemistry | 1999

A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection

Stepan Melnyk; Marta Pogribna; Igor Pogribny; R. Jean Hine; S. Jill James

A new method has been developed that is capable of providing a complete profile of the most common monothiols and disulfides present in plasma or tissue extracts. The method utilizes reversed phase ion-pairing high performance liquid chromatography coupled with coulometric electrochemical detection to simultaneously quantify free oxidized and reduced aminothiols or total aminothiols after chemical reduction. The method is extremely sensitive, with limits of detection in the 5 fmol/mL range for monothiols and 50 fmol/mL for dithiols. The interassay and intraassay coefficients of variation for total and free aminothiols ranged between 1.2 and 5.8%. The mean recoveries for total and plasma aminothiols ranged between 97.1 and 102.8%. The aminothiols are quantified directly, without derivatization, and include methionine, homocysteine, homocystine, cystathionine, cysteine, cystine, cysteinylglycine, and oxidized and reduced glutathione. Because a complete aminothiol profile of metabolites in both the remethylation (anabolic) and transulfuration (catabolic) pathways of homocysteine metabolism can be determined simultaneously, this new method should be useful in determining the metabolic etiology of homocysteinemia and in designing appropriate nutritional intervention strategies. Basic research applications of this method should lead to an increased understanding of the metabolic pathology of aminothiol imbalance.


The American Journal of Clinical Nutrition | 2009

Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism

S. Jill James; Stepan Melnyk; George J. Fuchs; Tyra Reid; Stefanie Jernigan; Oleksandra Pavliv; Amanda Hubanks; David W. Gaylor

BACKGROUND Metabolic abnormalities and targeted treatment trials have been reported for several neurobehavioral disorders but are relatively understudied in autism. OBJECTIVE The objective of this study was to determine whether or not treatment with the metabolic precursors, methylcobalamin and folinic acid, would improve plasma concentrations of transmethylation/transsulfuration metabolites and glutathione redox status in autistic children. DESIGN In an open-label trial, 40 autistic children were treated with 75 microg/kg methylcobalamin (2 times/wk) and 400 microg folinic acid (2 times/d) for 3 mo. Metabolites in the transmethylation/transsulfuration pathway were measured before and after treatment and compared with values measured in age-matched control children. RESULTS The results indicated that pretreatment metabolite concentrations in autistic children were significantly different from values in the control children. The 3-mo intervention resulted in significant increases in cysteine, cysteinylglycine, and glutathione concentrations (P < 0.001). The oxidized disulfide form of glutathione was decreased and the glutathione redox ratio increased after treatment (P < 0.008). Although mean metabolite concentrations were improved significantly after intervention, they remained below those in unaffected control children. CONCLUSION The significant improvements observed in transmethylation metabolites and glutathione redox status after treatment suggest that targeted nutritional intervention with methylcobalamin and folinic acid may be of clinical benefit in some children who have autism. This trial was registered at (clinicaltrials.gov) as NCT00692315.


The FASEB Journal | 2009

Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism

S. Jill James; Shannon Rose; Stepan Melnyk; Stefanie Jernigan; Sarah J. Blossom; Oleksandra Pavliv; David W. Gaylor

Research into the metabolic phenotype of autism has been relatively unexplored despite the fact that metabolic abnormalities have been implicated in the pathophysiology of several other neurobehavioral disorders. Plasma biomarkers of oxidative stress have been reported in autistic children;however, intracellular redox status has not yet been evaluated. Lymphoblastoid cells (LCLs) derived from autistic children and unaffected controls were used to assess relative concentrations of reduced glutathione (GSH) and oxidized disulfide glutathione (GSSG) in cell extracts and isolated mitochondria as a measure of intracellular redox capacity. The results indicated that the GSH/ GSSG redox ratio was decreased and percentage oxidized glutathione increased in both cytosol and mitochondria in the autism LCLs. Exposure to oxidative stress via the sulfhydryl reagent thimerosal resulted in a greater decrease in the GSH/GSSG ratio and increase in free radical generation in autism compared to control cells. Acute exposure to physiological levels of nitric oxide decreased mitochondrial membrane potential to a greater extent in the autism LCLs, although GSH/GSSG and ATP concentrations were similarly decreased in both cell lines. These results suggest that the autism LCLs exhibit a reduced glutathione reserve capacity in both cytosol and mitochondria that may compromise antioxidant defense and detoxification capacity under prooxidant conditions.— James, S. J., Rose, S., Melnyk, S., Jernigan, S., Blossom, S., Pavliv, O., Gaylor, D. W. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J. 23, 2374–2383 (2009)


Proceedings of the National Academy of Sciences of the United States of America | 2002

Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig

Charles H. Halsted; Jesus A. Villanueva; Angela M. Devlin; Onni Niemelä; Seppo Parkkila; Timothy A. Garrow; Lynn M. Wallock; Mark K. Shigenaga; Stepan Melnyk; S. Jill James

Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE and FDE) for 14 wk, and the significance of differences among the groups was determined by ANOVA. Plasma homocysteine levels were increased in all experimental groups from 6 wk onward and were greatest in FDE. Ethanol feeding reduced liver methionine synthase activity, S-adenosylmethionine (SAM), and glutathione, and elevated plasma malondialdehyde (MDA) and alanine transaminase. Folate deficiency decreased liver folate levels and increased global DNA hypomethylation. Ethanol feeding and folate deficiency acted together to decrease the liver SAM/S-adenosylhomocysteine (SAH) ratio and to increase liver SAH, DNA strand breaks, urinary 8-oxo-2′-deoxyguanosine [oxo(8)dG]/mg of creatinine, plasma homocysteine, and aspartate transaminase by more than 8-fold. Liver SAM correlated positively with glutathione, which correlated negatively with plasma MDA and urinary oxo(8)dG. Liver SAM/SAH correlated negatively with DNA strand breaks, which correlated with urinary oxo(8)dG. Livers from ethanol-fed animals showed increased centrilobular CYP2E1 and protein adducts with acetaldehyde and MDA. Steatohepatitis occurred in five of six pigs in FDE but not in the other groups. In summary, folate deficiency enhances perturbations in hepatic methionine metabolism and DNA damage while promoting alcoholic liver injury.


Journal of Nutrition | 2003

Mechanisms of DNA Damage, DNA Hypomethylation, and Tumor Progression in the Folate/Methyl-Deficient Rat Model of Hepatocarcinogenesis

S. Jill James; Igor P. Pogribny; Marta Pogribna; Barbara J. Miller; Stefanie Jernigan; Stepan Melnyk

Using the folate/methyl-deficient rat model of hepatocarcinogenesis, we obtained evidence that may provide new insights into a major unresolved paradox in DNA methylation and cancer research: the mechanistic basis for genome-wide hypomethylation despite an increase in DNA methyltransferase activity and gene-specific regional hypermethylation. Previous studies revealed that the methyltransferase binds with higher affinity to DNA strand breaks, gaps, abasic sites, and uracil than it does to its cognate hemimethylated CpG sites, consistent with its ancestral function as a DNA repair enzyme. These same DNA lesions are an early occurrence in models of folate and methyl deficiency and are often present in human preneoplastic cells. We hypothesized that the high-affinity binding of the maintenance DNA methyltransferase to unrepaired lesions in DNA could sequester available enzyme away from the replication fork and promote passive replication-dependent demethylation. In support of this possibility, we found that lesion-containing DNA is less efficiently methylated than lesion-free DNA from folate/methyl-deficient rats and that an increase in DNA strand breaks precedes DNA hypomethylation. Despite an adaptive increase in DNA methyltransferase activity, hemimethylated DNA from folate/methyl-deficient rats is progressively replaced by double-stranded unmethylated DNA that is resistant to remethylation with dietary methyl repletion. In promoter regions, the inappropriate binding of the DNA methyltransferase to unrepaired lesions or mispairs may promote local histone deacetylation, methylation, and regional hypermethylation associated with tumor suppressor gene silencing. These insights in an experimental model are consistent with the possibility that DNA lesions may be a necessary prerequisite for the disruption of normal DNA methylation patterns in preneoplastic and neoplastic cells.


Journal of Autism and Developmental Disorders | 2012

Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism.

Stepan Melnyk; George J. Fuchs; Eldon G. Schulz; Maya Lopez; Stephen G. Kahler; Jill J. Fussell; Jayne Bellando; Oleksandra Pavliv; Shannon Rose; Lisa Seidel; David W. Gaylor; S. Jill James

Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected siblings differed significantly from case siblings but not from controls. Oxidative protein/DNA damage and DNA hypomethylation (epigenetic alteration) were found in autistic children but not paired siblings or controls. These data indicate that the deficit in antioxidant and methylation capacity is specific for autism and may promote cellular damage and altered epigenetic gene expression. Further, these results suggest a plausible mechanism by which pro-oxidant environmental stressors may modulate genetic predisposition to autism.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Targeting Ras signaling through inhibition of carboxyl methylation: An unexpected property of methotrexate

Ann M. Winter-Vann; Barton A. Kamen; Martin O. Bergo; Stephen G. Young; Stepan Melnyk; S. Jill James; Patrick J. Casey

The antifolate methotrexate is one of the most successful drugs in cancer chemotherapy. Although its efficacy is widely attributed to a decrease in nucleotide biosynthesis (1), methotrexate is known to increase homocysteine (2), a compound associated with an elevated risk of heart disease, Alzheimers disease (3), and neural tube defects (4). A potential mechanism for the detrimental effects of homocysteine is cellular hypomethylation from an increase in S-adenosylhomocysteine (5), an inhibitor of methyltransferases including isoprenylcysteine carboxyl methyltransferase (Icmt). Among the substrates of Icmt is the monomeric G protein Ras, a critical component of many signaling pathways that regulate cell growth and differentiation. Because carboxyl methylation of Ras is important for proper plasma membrane localization and function (6), we investigated the role of Icmt in the antiproliferative effect of methotrexate. After methotrexate treatment of DKOB8 cells, Ras methylation is decreased by almost 90%. This hypomethylation is accompanied by a mislocalization of Ras to the cytosol and a 4-fold decrease in the activation of p44 mitogen-activated protein kinase and Akt. Additionally, cells lacking Icmt are highly resistant to methotrexate. Whereas cells expressing wild-type levels of Icmt are inhibited by methotrexate, stable expression of myristoylated H-Ras, which does not require carboxyl methylation for membrane attachment (7), confers resistance to methotrexate. These results suggest that inhibition of Icmt is a critical component of the antiproliferative effect of methotrexate, expanding our understanding of this widely used drug and identifying Icmt as a target for drug discovery.

Collaboration


Dive into the Stepan Melnyk's collaboration.

Top Co-Authors

Avatar

S. Jill James

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Igor P. Pogribny

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Oleksandra Pavliv

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Stefanie Jernigan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Mario A. Cleves

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shannon Rose

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Volodymyr Tryndyak

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Frederick A. Beland

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Pogribna

National Center for Toxicological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge