Stepan N. Belyakin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stepan N. Belyakin.
Journal of Cell Science | 2007
Alexey V. Pindyurin; Celine Moorman; Elzo de Wit; Stepan N. Belyakin; E. S. Belyaeva; George K. Christophides; Fotis C. Kafatos; Bas van Steensel; Igor F. Zhimulev
Drosophila melanogaster Suppressor of Under-Replication (SuUR) gene encodes a protein that modulates replicative properties of heterochromatin in endocycles of polytene cells. The SuUR mutation abolishes underreplication of intercalary heterochromatin and results in partial underreplication of pericentric heterochromatin. We performed a genome-wide mapping of SUUR target genes in non-polytenic Drosophila Kc cells by using the DamID approach. We show that SUUR preferentially binds genes that are transcriptionally silent and late-replicated. Distinct subsets of SUUR targets are associated with PcG proteins (Pc and Esc; Polycomb and Extra sexcombs), heterochromatic proteins [HP1 and SU(VAR)3-9] and B-type lamin. The SUUR binding profile negatively correlates with the DNA polytenization levels of salivary gland polytene chromosomes. Finally, SUUR target genes are repressed in Drosophila embryos and gradually activated later in development. Together these results suggest that SUUR is a ubiquitous marker of heterochromatin in different cell types.
Chromosoma | 2008
E. S. Belyaeva; Evgeniya N. Andreyeva; Stepan N. Belyakin; E. I. Volkova; I. F. Zhimulev
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.
Chromosoma | 2010
Stepan N. Belyakin; V. N. Babenko; Daniil A. Maksimov; Viktor V. Shloma; Evgeny Z. Kvon; E. S. Belyaeva; Igor F. Zhimulev
Regulation of replication timing has been a focus of many studies. It has been shown that numerous chromosomal regions switch their replication timing on cell differentiation in Drosophila and mice. However, it is not clear which features of these regions are essential for such regulation. In this study, we examined the organization of late underreplicated regions (URs) of the Drosophila melanogaster genome. When compared with their flanks, these regions showed decreased gene density. A detailed view revealed that these regions originate from unusual combination of short genes and long intergenic spacers. Furthermore, gene expression study showed that this pattern is mostly contributed by short testis-specific genes abundant in the URs. Based on these observations, we developed a genome scanning algorithm and identified 110 regions possessing similar gene density and transcriptional profiles. According to the published data, replication of these regions has been significantly shifted towards late S-phase in two Drosophila cell lines and in polytene chromosomes. Our results suggest that genomic organization of the underreplicated areas of Drosophila polytene chromosomes may be associated with the regulation of their replication timing.
Genetica | 2003
Igor F. Zhimulev; E. S. Belyaeva; I. V. Makunin; Vincenzo Pirrotta; V. F. Semeshin; Artyom A. Alekseyenko; Stepan N. Belyakin; E. I. Volkova; Dmitry E. Koryakov; Evgeniya N. Andreyeva; Olga V. Demakova; Irina V. Kotlikova; Tatyana D. Kolesnikova; Lidiya V. Boldyreva; Roman A. Nanayev
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.
Chromosoma | 2002
Yuri M. Moshkin; Stepan N. Belyakin; Nikolay B. Rubtsov; Elena B. Kokoza; Artem A. Alekseyenko; E. I. Volkova; E. S. Belyaeva; I. V. Makunin; Pierre Spierer; Igor F. Zhimulev
Abstract. In the Suppressor of Underreplication (SuUR) mutant strain of Drosophila melanogaster, the heterochromatin of polytene chromosomes is not underreplicated and, as a consequence, a number of β-heterochromatic regions acquire a banded structure. The chromocenter does not form in these polytene chromosomes, and heterochromatic regions, normally part of the chromocenter, become accessible to cytological analysis. We generated four genomic DNA libraries from specific heterochromatic regions by microdissection of polytene chromosomes. In situ hybridization of individual libraries onto SuUR polytene chromosomes shows that repetitive DNA sequences spread into the neighboring euchromatic regions. This observation allows the localization of eu-heterochromatin transition zones on polytene chromosomes. We find that genomic scaffolds from the eu-heterochromatin transition zones are enriched in repetitive DNA sequences homologous to those flanking the suppressor of forked gene [su(f) repeat]. We isolated and sequenced about 300 clones from the heterochromatic DNA libraries obtained. Most of the clones contain repetitive DNA sequences; however, some of the clones have unique DNA sequences shared with parts of unmapped genomic scaffolds. Hybridization of these clones onto SuUR polytene chromosomes allowed us to assign the cytological localizations of the corresponding genomic scaffolds within heterochromatin. Our results demonstrate that the SuUR mutant renders possible the mapping of heterochromatic scaffolds on polytene chromosomes.
BMC Genomics | 2010
V. N. Babenko; I. V. Makunin; Irina V Brusentsova; E. S. Belyaeva; Daniil A. Maksimov; Stepan N. Belyakin; Péter Maróy; Lyubov A Vasil'eva; Igor F. Zhimulev
BackgroundEukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster.ResultsHere we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elemen ts and piggyBac s in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles.ConclusionsOur results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.
Chromosoma | 2014
Daniil A. Maksimov; Dmitry E. Koryakov; Stepan N. Belyakin
Eukaryotic genomes are organized in large chromatin domains that maintain proper gene activity in the cell. These domains may be permissive or repressive to the transcription of underlying genes. Based on its protein makeup, chromatin in Drosophila cell culture has been recently categorized into five color-coded states. Suppressor of Under-Replication (SUUR) protein was found to be the major component present in all three repressive chromatin states named BLACK, BLUE, and GREEN and to be depleted from the active YELLOW and RED chromatin types. Here, we addressed the question of developmental dynamics of SUUR binding as a marker of repressed chromatin types. We established genomewide SUUR binding profiles in larval salivary gland, brain, and embryos using DNA adenine methyltransferase identification (DamID) technique, performed their pairwise comparisons and comparisons with the published data from Drosophila Kc cells. SUUR binding pattern was found to vary between the samples. Increase in SUUR binding predominantly correlated with local gene repression suggesting heterochromatin formation. Reduction in SUUR binding often coincided with activation of tissue-specific genes probably reflecting the transition to permissive chromatin state and increase in accessibility to specific transcription factors. SUUR binding plasticity accompanied by the regulation of the underlying genes was mainly observed in BLACK, BLUE, and RED chromatin types. Our results provide novel insight into the developmental dynamics of repressive chromatin and reveal a link to the chromatin-guided regulation of gene expression.
PLOS ONE | 2013
Igor V. Makunin; Viktor V. Shloma; Stuart Stephen; Michael Pheasant; Stepan N. Belyakin
Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption.
Molecular Biology | 2014
P. P. Laktionov; Helen White-Cooper; Daniil A. Maksimov; Stepan N. Belyakin
AbstarctIn Drosophila melanogaster differentiation of the male germ cells is accompanied by chromatin rearrangement and activation of the specific genes. These processes are regulated by few transcription factors that belong to two classes, can and aly that form distinct functional complexes. Mechanisms of action of aly and can class transcription factors on gene expression and chromatin state remain unclear. To investigate this question we have built the whole genome binding profile of transcription factor Comr belonging to aly class using the tissue-specific DamID method. Resulting data were correlated with gene expression in comr (aly class) and can (can class) mutant testes. It was shown that Comr is a direct activator for about 300 testis-specific genes. Furthermore a set of genes revealed decreased expression in comr mutants but did not bind Comr protein, suggesting the existence of secondary regulation. Indeed, among the Comr gene targets we found a gene coding an uncharacterized transcription factor that could be a secondary participant in the genetic pathway in spermatocytes. These date allowed us to advance a model of gene activation needed for male gametes differentiation in D. melanogaster.
Chromosoma | 2012
Dmitry E. Koryakov; Galina V. Pokholkova; Daniil A. Maksimov; Stepan N. Belyakin; E. S. Belyaeva; Igor F. Zhimulev
In salivary gland polytene chromosomes of Drosophila melanogaster, the regions of intercalary heterochromatin are characterized by late replication, under-replication, and genetic silencing. Using Gal4/UAS system, we induced transcription of sequences adjacent to transgene insertions in the band 11A6-9. This activation resulted in a loss of “silent” and appearance of “active” epigenetic marks, recruitment of RNA polymerase II, and formation of a puff. The activated region is now early replicating and shows increased level of DNA polytenization. Notably, all these changes are restricted to the area around the inserts, whereas the rest of the band remains inactive and late replicating. Although only a short area near the insertion site is transcribed, it results in an “open” chromatin conformation in a much broader region. We conclude that regions of intercalary heterochromatin do not form stand-alone units of late replication and under-replication. Every part of such regions can be activated and polytenized independently of other parts.