Stephan A. Frye
Oslo University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephan A. Frye.
Molecular Microbiology | 2002
Finn Erik Aas; Matthew C. Wolfgang; Stephan A. Frye; Steven Dunham; Cecilia Løvold; Michael Koomey
The mechanisms by which DNA is taken up into the bacterial cell during natural genetic transformation are poorly understood. Although related components essential to the uptake of DNA during transforma‐tion have been defined in Gram‐negative species, it remains unclear whether DNA binding and uptake are dissociable events. Therefore, DNA uptake has been the earliest definable step in any Gram‐negative transformation pathway. In the human pathogen Neisseria gonorrhoeae, sequence‐specific DNA uptake requires an intact type IV pili (Tfp) biogenesis machinery along with three molecules that are dispensable for Tfp expression: ComP (a pilin subunit‐like molecule), PilT (a cytoplasmic protein involved in pilus retraction) and ComE (a periplasmic protein with intrinsic DNA‐binding activity). By conditionally altering the levels of ComP and PilT expression, we show here that DNA binding and uptake are resolvable events. Consequently, we are able to demonstrate that PilT is largely dispensable for functional DNA binding and, therefore, contributes specifically to uptake. Furthermore, sequence specificity in this system is imposed at the level of DNA binding, a process that is influenced by both ComP and PilE. However, sequence‐specific DNA binding is not attributable to an intrinsic property of the Tfp subunit protein. Finally, we demonstrate the existence of a robust, non‐specific DNA‐binding activity associated with the expression of both Tfp and PilT, which is unrelated to transformation but obscures the observation of specific binding events.
Fems Microbiology Reviews | 2009
Ole Herman Ambur; Tonje Davidsen; Stephan A. Frye; Seetha V. Balasingham; Karin Lagesen; Torbjørn Rognes; Tone Tønjum
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.
Journal of Bacteriology | 2007
Seetha V. Balasingham; Richard F. Collins; Reza Assalkhou; Håvard Homberset; Stephan A. Frye; Jeremy P. Derrick; Tone Tønjum
Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.
Microbiology | 2007
Reza Assalkhou; Seetha V. Balasingham; Richard F. Collins; Stephan A. Frye; Tonje Davidsen; Afsaneh V. Benam; Magnar Bjørås; Jeremy P. Derrick; Tone Tønjum
Neisseria meningitidis is naturally competent for transformation throughout its growth cycle. Transformation in neisserial species is coupled to the expression of type IV pili, which are present on the cell surface as bundled filamentous appendages, and are assembled, extruded and retracted by the pilus biogenesis components. During the initial phase of the transformation process, binding and uptake of DNA takes place with entry through a presumed outer-membrane channel into the periplasm. This study showed that DNA associates only weakly with purified pili, but binds significantly to the PilQ complex isolated directly from meningococcal membranes. By assessing the DNA-binding activity of the native complex PilQ, as well as recombinant truncated PilQ monomers, it was shown that the N-terminal region of PilQ is involved in the interaction with DNA. It was evident that the binding of ssDNA to PilQ had a higher affinity than the binding of dsDNA. The binding of DNA to PilQ did not, however, depend on the presence of the neisserial DNA-uptake sequence. It is suggested that transforming DNA is introduced into the cell through the outer-membrane channel formed by the PilQ complex, and that DNA uptake occurs by non-specific introduction of DNA coupled to pilus retraction, followed by presentation to DNA-binding component(s), including PilQ.
Molecular Diagnosis & Therapy | 2009
Seetha V. Balasingham; Tonje Davidsen; Irena Szpinda; Stephan A. Frye; Tone Tønjum
The processing of clinical specimens in the mycobacterial diagnostic laboratory has undergone remarkable improvements during the last decade. While microscopy and culture are still the major backbone for laboratory diagnosis of tuberculosis on a worldwide basis, new methods including molecular diagnostic tests have evolved over the last two decades. The majority of molecular tests have been focused on (i) detection of nucleic acids, both DNA and RNA, that are specific to Mycobacterium tuberculosis, by amplification techniques such as polymerase chain reaction (PCR); and (ii) detection of mutations in the genes that are associated with resistance to antituberculosis drugs by sequencing or nucleic acid hybridization. Recent developments in direct and rapid detection of mycobacteria, with emphasis on M. tuberculosis species identification by 16S rRNA gene sequence analysis or oligohybridization and strain typing, as well as detection of drug susceptibility patterns, all contribute to these advances. Generally, the balance between genome instability and genome maintenance as the basis for evolutionary development, strain diversification and resistance development is important, because it cradles the resulting M. tuberculosis phenotype. At the same time, semi-automated culture systems have contributed greatly to the increased sensitivity and reduced turnaround time in the mycobacterial analysis of clinical specimens. Collectively, these advances are particularly important for establishing the diagnosis of tuberculosis in children. More basic and operational research to appraise the impact and cost effectiveness of new diagnostic technologies must, however, be carried out. Furthermore, the design and quality of clinical trials evaluating new diagnostics must be improved to allow clinical and laboratory services that would provide rapid response to test results. Thus, important work remains before the new diagnostic tools can be meaningfully integrated into national tuberculosis control programs of high-burden countries.
PLOS Genetics | 2013
Stephan A. Frye; Mariann Nilsen; Tone Tønjum; Ole Herman Ambur
In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS–dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5′-CTG-3′ is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS–dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation in bacteria, and define the phylogenetic relationships within the Neisseriaceae family.
Molecular Diagnosis & Therapy | 2012
Seetha V. Balasingham; Tonje Davidsen; Irena Szpinda; Stephan A. Frye; Tone Tønjum
The processing of clinical specimens in the mycobacterial diagnostic laboratory has undergone remarkable improvements during the last decade. While microscopy and culture are still the major backbone for laboratory diagnosis of tuberculosis on a worldwide basis, new methods including molecular diagnostic tests have evolved over the last two decades. The majority of molecular tests have been focused on (i) detection of nucleic acids, both DNA and RNA, that are specific to Mycobacterium tuberculosis, by amplification techniques such as polymerase chain reaction (PCR); and (ii) detection of mutations in the genes that are associated with resistance to antituberculosis drugs by sequencing or nucleic acid hybridization. Recent developments in direct and rapid detection of mycobacteria, with emphasis on M. tuberculosis species identification by 16S rRNA gene sequence analysis or oligohybridization and strain typing, as well as detection of drug susceptibility patterns, all contribute to these advances. Generally, the balance between genome instability and genome maintenance as the basis for evolutionary development, strain diversification and resistance development is important, because it cradles the resulting M. tuberculosis phenotype.At the same time, semi-automated culture systems have contributed greatly to the increased sensitivity and reduced turnaround time in the mycobacterial analysis of clinical specimens. Collectively, these advances are particularly important for establishing the diagnosis of tuberculosis in children.More basic and operational research to appraise the impact and cost effectiveness of new diagnostic technologies must, however, be carried out. Furthermore, the design and quality of clinical trials evaluating new diagnostics must be improved to allow clinical and laboratory services that would provide rapid response to test results. Thus, important work remains before the new diagnostic tools can be meaningfully integrated into national tuberculosis control programs of high-burden countries.
Molecular Microbiology | 2007
Finn Erik Aas; Hanne C. Winther-Larsen; Matthew C. Wolfgang; Stephan A. Frye; Cecilia Løvold; Norbert Roos; Jos P. M. van Putten; Michael Koomey
Type IV pili (Tfp) are multifunctional surface appendages expressed by many Gram negative species of medical, environmental and industrial importance. The N‐terminally localized, so called α‐helical spine is the most conserved structural feature of pilin subunits in these organelles. Prevailing models of pilus assembly and structure invariably implicate its importance to membrane trafficking, organelle structure and related functions. Nonetheless, relatively few studies have examined the effects of missense substitutions within this domain. Using Neisseria gonorrhoeae as a model system, we constructed mutants with single and multiple amino acid substitutions localized to this region of the pilin subunit PilE and characterized them with regard to pilin stability, organelle expression and associated phenotypes. The consequences of simultaneous expression of the mutant and wild‐type PilE forms were also examined. The findings document for the first time in a defined genetic background the phenomenon of pilin intermolecular complementation in which assembly defective pilin can be rescued into purifiable Tfp by coexpression of wild‐type PilE. The results further demonstrate that pilin subunit composition can impact on organelle dynamics mediated by the PilT retraction protein via a process that appears to monitor the efficacy of subunit–subunit interactions. In addition to confirming and extending the evidence for PilE multimerization as an essential component for competence for natural genetic transformation, this work paves the way for detailed studies of Tfp subunit–subunit interactions including self‐recognition within the membrane and packing within the pilus polymer.
Microbiology | 2009
Emma Lång; Kristine Haugen; Burkhard Fleckenstein; Håvard Homberset; Stephan A. Frye; Ole Herman Ambur; Tone Tønjum
Neisseria meningitidis, a causative agent of meningitis and septicaemia, expresses type IV pili, a feature correlating with the uptake of exogenous DNA from the environment by natural transformation. The outer membrane complex PilQ, through which pili are extruded and retracted, has previously been shown to bind DNA in its pore region. In order to further elucidate how DNA is transported across the membranes, we searched for DNA binding proteins within the meningococcal inner membrane. Inner membrane fractions from a panel of neisserial strains were subjected to a solid-phase overlay assay with DNA substrates, and MS was subsequently employed to identify proteins that bind DNA. A number of DNA binding components were detected, including the pilus biogenesis component PilG, the competence protein ComL, and the cell division ATP-binding protein FtsE, as well as two hypothetical proteins. The DNA binding activity of these components was not dependent on the presence of the neisserial DNA uptake sequence. Null mutants, corresponding to each of the proteins identified, were constructed to assess their phenotypes. Only mutants defective in pilus biogenesis were non-competent and non-piliated. The DNA binding activity of the pilus biogenesis components PilQ and PilG and the phenotypes of their respective null mutants suggest that these proteins are directly involved as players in natural transformation, and not only indirectly, through pilus biogenesis.
Clinical and Experimental Gastroenterology | 2015
Petr Ricanek; Lisa Kristina Lunde; Stephan A. Frye; Mari Støen; Ståle Nygård; Jens Preben Morth; Andreas Rydning; Morten H. Vatn; Mahmood Amiry-Moghaddam; Tone Tønjum
Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn’s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.