Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Bialonski is active.

Publication


Featured researches published by Stephan Bialonski.


Chaos | 2008

Evolving functional network properties and synchronizability during human epileptic seizures

Kaspar Schindler; Stephan Bialonski; Marie-Therese Horstmann; Christian E. Elger; Klaus Lehnertz

We assess electrical brain dynamics before, during, and after 100 human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal evolution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a more regular and then back toward a more random functional topology. Surprisingly, synchronizability was significantly decreased during the seizure state but increased already prior to seizure end. Our findings underline the high relevance of studying complex systems from the viewpoint of complex networks, which may help to gain deeper insights into the complicated dynamics underlying epileptic seizures.


Journal of Neuroscience Methods | 2009

Synchronization phenomena in human epileptic brain networks.

Klaus Lehnertz; Stephan Bialonski; Marie-Therese Horstmann; Dieter Krug; Alexander Rothkegel; Matthäus Staniek; Tobias Wagner

Epilepsy is a malfunction of the brain that affects over 50 million people worldwide. Epileptic seizures are usually characterized by an abnormal synchronized firing of neurons involved in the epileptic process. In human epilepsy the exact mechanisms underlying seizure generation are still uncertain as are mechanisms underlying seizure spreading and termination. There is now growing evidence that an improved understanding of the epileptic process can be achieved through the analysis of properties of epileptic brain networks and through the analysis of interactions in such networks. In this overview, we summarize recent methodological developments to assess synchronization phenomena in human epileptic brain networks and present findings obtained from analyses of brain electromagnetic signals recorded in epilepsy patients.


Clinical Neurophysiology | 2010

State dependent properties of epileptic brain networks: Comparative graph–theoretical analyses of simultaneously recorded EEG and MEG

Marie-Therese Horstmann; Stephan Bialonski; Nina Noennig; Heinke Mai; Jens Prusseit; Jörg Wellmer; Hermann Hinrichs; Klaus Lehnertz

OBJECTIVE To investigate whether functional brain networks of epilepsy patients treated with antiepileptic medication differ from networks of healthy controls even during the seizure-free interval. METHODS We applied different rules to construct binary and weighted networks from EEG and MEG data recorded under a resting-state eyes-open and eyes-closed condition from 21 epilepsy patients and 23 healthy controls. The average shortest path length and the clustering coefficient served as global statistical network characteristics. RESULTS Independent on the behavioral condition, epileptic brains exhibited a more regular functional network structure. Similarly, the eyes-closed condition was characterized by a more regular functional network structure in both groups. The amount of network reorganization due to behavioral state changes was similar in both groups. Consistent findings could be achieved for networks derived from EEG but hardly from MEG recordings, and network construction rules had a rather strong impact on our findings. CONCLUSIONS Despite the locality of the investigated processes epileptic brain networks differ in their global characteristics from non-epileptic brain networks. Further methodological developments are necessary to improve the characterization of disturbed and normal functional networks. SIGNIFICANCE An increased regularity and a diminished modulation capability appear characteristic of epileptic brain networks.


Journal of Clinical Neurophysiology | 2007

State-of-the-art of seizure prediction.

Klaus Lehnertz; Florian Mormann; Hannes Osterhage; Andy M ller; Jens Prusseit; Anton Chernihovskyi; Matth us Staniek; Dieter Krug; Stephan Bialonski; Christian E. Elger

Summary: Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available as to how, when, or why a seizure occurs in humans. The fact that seizures occur without warning in the majority of cases is one of the most disabling aspects of epilepsy. If it were possible to identify preictal precursors from the EEG of epilepsy patients, therapeutic possibilities and quality of life could improve dramatically. The last three decades have witnessed a rapid increase in the development of new EEG analysis techniques that appear to be capable of defining seizure precursors. Since the 1970s, studies on seizure prediction have advanced from preliminary descriptions of preictal phenomena and proof of principle studies via controlled studies to studies on continuous multiday recordings. At present, it is unclear whether prospective algorithms can predict seizures. If prediction algorithms are to be used in invasive seizure intervention techniques in humans, they must be proven to perform considerably better than a random predictor. The authors present an overview of the field of seizure prediction, its history, accomplishments, recent controversies, and potential for future development.


Chaos | 2010

From brain to earth and climate systems: Small-world interaction networks or not?

Stephan Bialonski; Marie-Therese Horstmann; Klaus Lehnertz

We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations, we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with the commonly used time series analysis based approaches to network characterization.


Physica D: Nonlinear Phenomena | 2014

Evolving networks in the human epileptic brain

Klaus Lehnertz; Gerrit Ansmann; Stephan Bialonski; Henning Dickten; Christian Geier; Stephan Porz

Abstract Network theory provides novel concepts that promise an improved characterization of interacting dynamical systems. Within this framework, evolving networks can be considered as being composed of nodes, representing systems, and of time-varying edges, representing interactions between these systems. This approach is highly attractive to further our understanding of the physiological and pathophysiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic process can be regarded as a large-scale network phenomenon. We here review methodologies for inferring networks from empirical time series and for a characterization of these evolving networks. We summarize recent findings derived from studies that investigate human epileptic brain networks evolving on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and discuss future perspectives.


Physical Review E | 2007

Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.

Carsten Allefeld; Stephan Bialonski

Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.


Physical Review E | 2006

Identifying phase synchronization clusters in spatially extended dynamical systems.

Stephan Bialonski; Klaus Lehnertz

We investigate two recently proposed multivariate time series analysis techniques that aim at detecting phase synchronization clusters in spatially extended, nonstationary systems with regard to field applications. The starting point of both techniques is a matrix whose entries are the mean phase coherence values measured between pairs of time series. The first method is a mean-field approach which allows one to define the strength of participation of a subsystem in a single synchronization cluster. The second method is based on an eigenvalue decomposition from which a participation index is derived that characterizes the degree of involvement of a subsystem within multiple synchronization clusters. Simulating multiple clusters within a lattice of coupled Lorenz oscillators we explore the limitations and pitfalls of both methods and demonstrate (a) that the mean-field approach is relatively robust even in configurations where the single-cluster assumption is not entirely fulfilled and (b) that the eigenvalue-decomposition approach correctly identifies the simulated clusters even for low coupling strengths. Using the eigenvalue-decomposition approach we studied spatiotemporal synchronization clusters in long-lasting multichannel EEG recordings from epilepsy patients and obtained results that fully confirm findings from well established neurophysiological examination techniques. Multivariate time series analysis methods such as synchronization cluster analysis, which account for nonlinearities in the data, are expected to provide complementary information which allows one to gain deeper insights into the collective dynamics of spatially extended complex systems.


PLOS ONE | 2011

Unraveling spurious properties of interaction networks with tailored random networks.

Stephan Bialonski; Martin Wendler; Klaus Lehnertz

We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.


Chaos | 2013

Assortative mixing in functional brain networks during epileptic seizures.

Stephan Bialonski; Klaus Lehnertz

We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

Collaboration


Dive into the Stephan Bialonski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge