Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan C. Collins is active.

Publication


Featured researches published by Stephan C. Collins.


Proceedings of the National Academy of Sciences of the United States of America | 2009

miR-375 maintains normal pancreatic alpha- and beta-cell mass.

Matthew N. Poy; Jean Hausser; Mirko Trajkovski; Matthias Braun; Stephan C. Collins; Patrik Rorsman; Mihaela Zavolan; Markus Stoffel

Altered growth and development of the endocrine pancreas is a frequent cause of the hyperglycemia associated with diabetes. Here we show that microRNA-375 (miR-375), which is highly expressed in pancreatic islets, is required for normal glucose homeostasis. Mice lacking miR-375 (375KO) are hyperglycemic, exhibit increased total pancreatic α-cell numbers, fasting and fed plasma glucagon levels, and increased gluconeogenesis and hepatic glucose output. Furthermore, pancreatic β-cell mass is decreased in 375KO mice as a result of impaired proliferation. In contrast, pancreatic islets of obese mice (ob/ob), a model of increased β-cell mass, exhibit increased expression of miR-375. Genetic deletion of miR-375 from these animals (375/ob) profoundly diminished the proliferative capacity of the endocrine pancreas and resulted in a severely diabetic state. Bioinformatic analysis of transcript data from 375KO islets revealed that miR-375 regulates a cluster of genes controlling cellular growth and proliferation. These data provide evidence that miR-375 is essential for normal glucose homeostasis, α- and β-cell turnover, and adaptive β-cell expansion in response to increasing insulin demand in insulin resistance.


Diabetologia | 2010

Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes

Blanca M. Herrera; Helen Lockstone; Jennifer M. Taylor; M. Ria; Amy Barrett; Stephan C. Collins; Pamela J. Kaisaki; Karène Argoud; C. Fernandez; Mary E. Travers; J. P. Grew; Joshua C. Randall; A L Gloyn; Dominique Gauguier; M. McCarthy; Cecilia M. Lindgren

Aims/hypothesisMicroRNAs regulate a broad range of biological mechanisms. To investigate the relationship between microRNA expression and type 2 diabetes, we compared global microRNA expression in insulin target tissues from three inbred rat strains that differ in diabetes susceptibility.MethodsUsing microarrays, we measured the expression of 283 microRNAs in adipose, liver and muscle tissue from hyperglycaemic (Goto–Kakizaki), intermediate glycaemic (Wistar Kyoto) and normoglycaemic (Brown Norway) rats (n = 5 for each strain). Expression was compared across strains and validated using quantitative RT-PCR. Furthermore, microRNA expression variation in adipose tissue was investigated in 3T3-L1 adipocytes exposed to hyperglycaemic conditions.ResultsWe found 29 significantly differentiated microRNAs (padjusted < 0.05): nine in adipose tissue, 18 in liver and two in muscle. Of these, five microRNAs had expression patterns that correlated with the strain-specific glycaemic phenotype. MiR-222 (padjusted = 0.0005) and miR-27a (padjusted = 0.006) were upregulated in adipose tissue; miR-195 (padjusted = 0.006) and miR-103 (padjusted = 0.04) were upregulated in liver; and miR-10b (padjusted = 0.004) was downregulated in muscle. Exposure of 3T3-L1 adipocytes to increased glucose concentration upregulated the expression of miR-222 (p = 0.008), miR-27a (p = 0.02) and the previously reported miR-29a (p = 0.02). Predicted target genes of these differentially expressed microRNAs are involved in pathways relevant to type 2 diabetes.ConclusionThe expression patterns of miR-222, miR-27a, miR-195, miR-103 and miR-10b varied with hyperglycaemia, suggesting a role for these microRNAs in the pathophysiology of type 2 diabetes, as modelled by the Gyoto–Kakizaki rat. We observed similar patterns of expression of miR-222, miR-27a and miR-29a in adipocytes as a response to increased glucose levels, which supports our hypothesis that altered expression of microRNAs accompanies primary events related to the pathogenesis of type 2 diabetes.


Cell | 2009

Regulation of PKD by the MAPK p38δ in Insulin Secretion and Glucose Homeostasis

Grzegorz Sumara; Ivan Formentini; Stephan C. Collins; Izabela Sumara; Renata Windak; Bernd Bodenmiller; Reshma Ramracheya; Dorothée Caille; Huiping Jiang; Kenneth A. Platt; Paolo Meda; Rudolf Aebersold; Patrik Rorsman; Romeo Ricci

Summary Dysfunction and loss of insulin-producing pancreatic β cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38δ display improved glucose tolerance due to enhanced insulin secretion from pancreatic β cells. Deletion of p38δ results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38δ catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38δ null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated β cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38δ-deficient islets and glucose tolerance in p38δ null mice as well as their susceptibility to oxidative stress. In conclusion, the p38δ-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic β cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.


Cell Metabolism | 2009

Chronic Palmitate Exposure Inhibits Insulin Secretion by Dissociation of Ca2+ Channels from Secretory Granules

Michael B. Hoppa; Stephan C. Collins; Reshma Ramracheya; Leanne Hodson; Stefan Amisten; Quan Zhang; Paul Johnson; Frances M. Ashcroft; Patrik Rorsman

Summary Long-term (72 hr) exposure of pancreatic islets to palmitate inhibited glucose-induced insulin secretion by >50% with first- and second-phase secretion being equally suppressed. This inhibition correlated with the selective impairment of exocytosis evoked by brief (action potential-like) depolarizations, whereas that evoked by long (∼250 ms) stimuli was unaffected. Under normal conditions, Ca2+ influx elicited by brief membrane depolarizations increases [Ca2+]i to high levels within discrete microdomains and triggers the exocytosis of closely associated insulin granules. We found that these domains of localized Ca2+ entry become dispersed by long-term (72 hr), but not by acute (2 hr), exposure to palmitate. Importantly, the release competence of the granules was not affected by palmitate. Thus, the location rather than the magnitude of the Ca2+ increase determines its capacity to evoke exocytosis. In both mouse and human islets, the palmitate-induced secretion defect was reversed when the β cell action potential was pharmacologically prolonged.


Journal of Clinical Investigation | 1999

Lipid infusion lowers sympathetic nervous activity and leads to increased β-cell responsiveness to glucose

Christophe Magnan; Stephan C. Collins; Marie-France Berthault; Nadim Kassis; Mylène Vincent; Marc Gilbert; Luc Pénicaud; Alain Ktorza; Françoise Assimacopoulos-Jeannet

We investigated the possible involvement of the autonomic nervous system in the effect of a long-term elevation of plasma free fatty acid (FFA) concentration on glucose-induced insulin secretion (GIIS) in rats. Rats were infused with an emulsion of triglycerides (Intralipid) for 48 hours (IL rats). This resulted in a twofold increase in plasma FFA concentration. At the end of infusion, GIIS as reflected in the insulinogenic index (DeltaI/DeltaG) was 2.5-fold greater in IL rats compared with control saline-infused rats. The ratio of sympathetic to parasympathetic nervous activities was sharply decreased in IL rats relative to controls. GIIS was studied in the presence of increasing amounts of alpha- and beta-adrenoreceptor agonists and antagonists. The lowest concentrations of the alpha2A-adrenoreceptor agonist oxymetazoline, which were ineffective in control rats, reduced GIIS in IL rats. At the dose of 0.3 pmol/kg, GIIS became similar in IL and control rats. The use of beta-adrenoreceptor agonist (isoproterenol) or antagonist (propranolol) did not result in a significant alteration in GIIS in both groups. GIIS remained as high in IL vagotomized rats as in intact IL rats, indicating that changes in parasympathetic tone were of minor importance. Altogether, the data show that lipid infusion provokes beta-cell hyperresponsiveness in vivo, at least in part through changes in alpha2-adrenergic innervation.


Obesity | 2008

Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition

Katherine Pinnick; Stephan C. Collins; Constantine Londos; Dominique Gauguier; Anne Clark; Barbara A. Fielding

Objective: Sustained exposure to lipids is deleterious for pancreatic islet function. This could be mediated through increased pancreatic fat following increased dietary fat and in obesity, which has implications for the onset of type 2 diabetes. The aims of this study were to determine changes in extent and composition of pancreatic, hepatic, and visceral fat in mice fed a high‐fat diet (HFD, 40% by weight) compared with a control diet (5% fat) of similar fatty acid composition, and to compare composition and extent of pancreatic fat in human type 2 diabetes.


Journal of Clinical Investigation | 2008

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes.

Christophe Girard; F. Thomas Wunderlich; Kenju Shimomura; Stephan C. Collins; Stephan Kaizik; Peter Proks; Fernando Abdulkader; Anne Clark; Vicky Ball; Lejla Zubcevic; Liz Bentley; Rebecca I. Clark; Chris Church; Alison Hugill; Juris Galvanovskis; Roger D. Cox; Patrik Rorsman; Jens C. Brüning; Frances M. Ashcroft

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.


Cell Metabolism | 2013

Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes

Quan Zhang; Reshma Ramracheya; Carolina Lahmann; Andrei I. Tarasov; Martin Bengtsson; Orit Braha; Matthias Braun; Melissa F. Brereton; Stephan C. Collins; Juris Galvanovskis; Alejandro González; Lukas N. Groschner; Nils J.G. Rorsman; Albert Salehi; Mary E. Travers; Jonathan N. Walker; Anna L. Gloyn; Fiona M. Gribble; Paul Johnson; Frank Reimann; Frances M. Ashcroft; Patrik Rorsman

Summary Glucagon, secreted by pancreatic islet α cells, is the principal hyperglycemic hormone. In diabetes, glucagon secretion is not suppressed at high glucose, exacerbating the consequences of insufficient insulin secretion, and is inadequate at low glucose, potentially leading to fatal hypoglycemia. The causal mechanisms remain unknown. Here we show that α cell KATP-channel activity is very low under hypoglycemic conditions and that hyperglycemia, via elevated intracellular ATP/ADP, leads to complete inhibition. This produces membrane depolarization and voltage-dependent inactivation of the Na+ channels involved in action potential firing that, via reduced action potential height and Ca2+ entry, suppresses glucagon secretion. Maneuvers that increase KATP channel activity, such as metabolic inhibition, mimic the glucagon secretory defects associated with diabetes. Low concentrations of the KATP channel blocker tolbutamide partially restore glucose-regulated glucagon secretion in islets from type 2 diabetic organ donors. These data suggest that impaired metabolic control of the KATP channels underlies the defective glucose regulation of glucagon secretion in type 2 diabetes.


Genes & Development | 2008

PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells.

Jens Zehetner; Carsten Friedrich Danzer; Stephan C. Collins; Katrin Eckhardt; Philipp A. Gerber; Pia Ballschmieter; Juris Galvanovskis; Kenju Shimomura; Frances M. Ashcroft; Bernard Thorens; Patrik Rorsman; Wilhelm Krek

Insulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL-HIF1alpha pathway in the control of beta-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in beta cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1alpha rescued these phenotypes, implying that they are the result of HIF1alpha activation. Together, these results identify pVHL and HIF1alpha as key regulators of insulin secretion from pancreatic beta cells. They further suggest that changes in the metabolic strategy of glucose metabolism in beta cells have profound effects on whole-body glucose homeostasis.


Diabetes | 2007

Long-Term Exposure to Glucose and Lipids Inhibits Glucose-Induced Insulin Secretion Downstream of Granule Fusion With Plasma Membrane

Charlotta S. Olofsson; Stephan C. Collins; Martin Bengtsson; Lena Eliasson; Albert Salehi; Kenju Shimomura; Andrei I. Tarasov; Cecilia Holm; Frances M. Ashcroft; Patrik Rorsman

Mouse β-cells cultured at 15 mmol/l glucose for 72 h had reduced ATP-sensitive K+ (KATP) channel activity (−30%), increased voltage-gated Ca2+ currents, higher intracellular free Ca2+ concentration ([Ca2+]i; +160%), more exocytosis (monitored by capacitance measurements, +100%), and greater insulin content (+230%) than those cultured at 4.5 mmol/l glucose. However, they released 20% less insulin when challenged with 20 mmol/l glucose. Glucose-induced (20 mmol/l) insulin secretion was reduced by 60–90% in islets cocultured at 4.5 or 15 mmol/l glucose and either oleate or palmitate (0.5 mmol/l). Free fatty acid (FFA)-induced inhibition of secretion was not associated with any major changes in [Ca2+]i or islet ATP content. Palmitate stimulated exocytosis by twofold or more but reduced K+-induced secretion by up to 60%. Basal (1 mmol/l glucose) KATP channel activity was 40% lower in islets cultured at 4.5 mmol/l glucose plus palmitate and 60% lower in islets cultured at 15 mmol/l glucose plus either of the FFAs. Insulin content decreased by 75% in islets exposed to FFAs in the presence of high (15 mmol/l), but not low (4.5 mmol/l), glucose concentrations, but the number of secretory granules was unchanged. FFA-induced inhibition of insulin secretion was not associated with increased transcript levels of the apoptosis markers Bax (BclII-associated X protein) and caspase-3. We conclude that glucose and FFAs reduce insulin secretion by interference with the exit of insulin via the fusion pore.

Collaboration


Dive into the Stephan C. Collins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela J. Kaisaki

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Robert H. Wallis

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Karène Argoud

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie-Thérèse Bihoreau

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge