Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Frickenhaus is active.

Publication


Featured researches published by Stephan Frickenhaus.


Nature | 2013

Pan genome of the phytoplankton Emiliania underpins its global distribution

Betsy A. Read; Jessica Kegel; Mary J. Klute; Alan Kuo; Stephane C. Lefebvre; Florian Maumus; Christoph Mayer; John P. Miller; Adam Monier; Asaf Salamov; Jeremy R. Young; Maria Aguilar; Jean-Michel Claverie; Stephan Frickenhaus; Karina Gonzalez; Emily K. Herman; Yao-Cheng Lin; Johnathan A. Napier; Hiroyuki Ogata; Analissa F Sarno; Jeremy Shmutz; Declan C. Schroeder; Frederic Verret; Peter von Dassow; Klaus Valentin; Yves Van de Peer; Glen L. Wheeler; Emiliana Huxleyi; Joel B. Dacks; Charles F. Delwiche

Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.


Nature | 2017

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

Thomas Mock; Robert Otillar; Jan Strauss; Mark McMullan; Pirita Paajanen; Jeremy Schmutz; Asaf Salamov; Remo Sanges; Andrew Toseland; Ben J. Ward; Andrew E. Allen; Christopher L. Dupont; Stephan Frickenhaus; Florian Maumus; Alaguraj Veluchamy; Taoyang Wu; Kerrie Barry; Angela Falciatore; Maria Immacolata Ferrante; Antonio Emidio Fortunato; Gernot Glöckner; Ansgar Gruber; Rachel Hipkin; Michael G. Janech; Peter G. Kroth; Florian Leese; Erika Lindquist; Barbara R. Lyon; Joel W. Martin; Christoph Mayer

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways

Heidrun Windisch; Raphaela Kathöver; Hans-Otto Pörtner; Stephan Frickenhaus; Magnus Lucassen

It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout (Pachycara brachycephalum) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.


The ISME Journal | 2010

Average genome size: a potential source of bias in comparative metagenomics

Bank Beszteri; Ben Temperton; Stephan Frickenhaus; Stephen J. Giovannoni

In gene-centric comparative metagenomics, differences in observed relative gene abundances among samples are often assumed to reflect the biological importance of individual genes in different habitats. Statistical tests and data mining for genes that represent habitat-specific adaptations are frequently based on this measure. We demonstrate that this measure is biased by the average genome size of the communities sampled. Average genome sizes can be estimated from the metagenomic data themselves, and taken into account in comparative analyses. We suggest that this would enable ecologically more meaningful comparisons, especially when the average genome sizes of compared communities differ substantially. We illustrate the influence of average genome-size differences on comparative analyses, with an example to highlight the need for further exploration of this bias.


PLOS ONE | 2012

Transcriptomic Analysis of Acclimation to Temperature and Light Stress in Saccharina latissima (Phaeophyceae)

Sandra Heinrich; Klaus-Ulrich Valentin; Stephan Frickenhaus; Uwe John; Christian Wiencke

Kelps, brown algae of the order Laminariales, dominate rocky shores and form huge kelp beds which provide habitat and nurseries for various marine organisms. Whereas the basic physiological and ecophysiological characteristics of kelps are well studied, the molecular processes underlying acclimation to different light and temperature conditions are still poorly understood. Therefore we investigated the molecular mechanisms underlying the physiological acclimation to light and temperature stress. Sporophytes of S. latissima were exposed to combinations of light intensities and temperatures, and microarray hybridizations were performed to determine changes in gene expression patterns. This first large-scale transcriptomic study of a kelp species shows that S. latissima responds to temperature and light stress with a multitude of transcriptional changes: up to 32% of genes showed an altered expression after the exposure experiments. High temperature had stronger effects on gene expression in S. latissima than low temperature, reflected by the higher number of temperature-responsive genes. We gained insights into underlying molecular processes of acclimation, which includes adjustment of the primary metabolism as well as induction of several ROS scavengers and a sophisticated regulation of Hsps. We show that S. latissima, as a cold adapted species, must make stronger efforts for acclimating to high than to low temperatures. The strongest response was caused by the combination of high temperatures with high light intensities, which proved most harmful for the alga.


Journal of Geophysical Research | 2006

High-resolution modeling of sediment erosion and particle transport across the northwest African shelf

Gökay Karakas; Nicolas Nowald; M Blaas; Patrick Marchesiello; Stephan Frickenhaus; Reiner Schlitzer

[1] The region off Cape Blanc along the northwest African coast is dominated by persistent upwelling and strong activity of small-scale eddies, filaments, and jets. Vertical particle camera profiles obtained during recent cruises in this region show that there exist two well-marked maxima of particle abundance in the water column, one at the surface and the other in subsurface layers between 200 m and 400 m depths. Using a highresolution (2.7 km) terrain-following coordinate ocean model with built-in ecosystem and sediment transport modules, we show that the surface particle maximum can be explained by local productivity, while the deeper, subsurface particle cloud most likely originates from particulate material eroded from the shallow shelf and transported offshore by vigorous filament activity and dynamic features of the flow. In the numerical experiments, particles are produced either by primary production in the surface layer or from prescribed sediment sources to mimic suspension and erosion along the shelf areas. Good agreement of modeled particle distributions with the data is achieved with a typical settling velocity of 5 m day � 1 . Time-averaged effective transport patterns of particles reveal distinct maxima between 20.5N and 23.5N off Cape Blanc. In the south of Cape Bojador and off Cape Timiris, on the other hand, the effective transport distance patterns suggest energetic offshore activity.


Molecular Ecology | 2014

Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum)

Heidrun Windisch; Stephan Frickenhaus; Uwe John; Rainer Knust; Hans-Otto Pörtner; Magnus Lucassen

Research on the thermal biology of Antarctic marine organisms has increased awareness of their vulnerability to climate change, as a flipside of their adaptation to life in the permanent cold and their limited capacity to acclimate to variable temperatures. Here, we employed a species‐specific microarray of the Antarctic eelpout, Pachycara brachycephalum, to identify long‐term shifts in gene expression after 2 months of acclimation to six temperatures between −1 and 9 °C. Changes in cellular processes comprised signalling, post‐translational modification, cytoskeleton remodelling, metabolic shifts and alterations in the transcription as well as translation machinery. The magnitude of transcriptomic responses paralleled the change in whole animal performance. Optimal growth at 3 °C occurred at a minimum in gene expression changes indicative of a balanced steady state. The up‐regulation of ribosomal transcripts at 5 °C and above was accompanied by the transcriptomic activation of differential protein degradation pathways, from proteasome‐based degradation in the cold towards lysosomal protein degradation in the warmth. From 7 °C upwards, increasing transcript levels representing heat‐shock proteins and an acute inflammatory response indicate cellular stress. Such patterns may contribute to a warm‐induced energy deficit and a strong weight loss at temperatures above 6 °C. Together, cold or warm acclimation led to specific cellular rearrangements and the progressive development of functional imbalances beyond the optimum temperature. The observed temperature‐specific expression profiles reveal the molecular basis of thermal plasticity and refine present understanding of the shape and positioning of the thermal performance curve of ectotherms on the temperature scale.


BMC Bioinformatics | 2009

STAMP: Extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design

Lars Kraemer; Bank Beszteri; Steffi Gäbler-Schwarz; Christoph Held; Florian Leese; Christoph Mayer; Kevin Pöhlmann; Stephan Frickenhaus

BackgroundMicrosatellites (MSs) are DNA markers with high analytical power, which are widely used in population genetics, genetic mapping, and forensic studies. Currently available software solutions for high-throughput MS design (i) have shortcomings in detecting and distinguishing imperfect and perfect MSs, (ii) lack often necessary interactive design steps, and (iii) do not allow for the development of primers for multiplex amplifications. We present a set of new tools implemented as extensions to the STADEN package, which provides the backbone functionality for flexible sequence analysis workflows. The possibility to assemble overlapping reads into unique contigs (provided by the base functionality of the STADEN package) is important to avoid developing redundant markers, a feature missing from most other similar tools.ResultsOur extensions to the STADEN package provide the following functionality to facilitate microsatellite (and also minisatellite) marker design: The new modules (i) integrate the state-of-the-art tandem repeat detection and analysis software PHOBOS into workflows, (ii) provide two separate repeat detection steps – with different search criteria – one for masking repetitive regions during assembly of sequencing reads and the other for designing repeat-flanking primers for MS candidate loci, (iii) incorporate the widely used primer design program PRIMER 3 into STADEN workflows, enabling the interactive design and visualization of flanking primers for microsatellites, and (iv) provide the functionality to find optimal locus- and primer pair combinations for multiplex primer design. Furthermore, our extensions include a module for storing analysis results in an SQLite database, providing a transparent solution for data access from within as well as from outside of the STADEN Package.ConclusionThe STADEN package is enhanced by our modules into a highly flexible, high-throughput, interactive tool for conventional and multiplex microsatellite marker design. It gives the user detailed control over the workflow, enabling flexible combinations of manual and automated analysis steps. The software is available under the OpenBSD License [1, 2]. The high efficiency of our automated marker design workflow has been confirmed in three microsatellite development projects.


Applied and Environmental Microbiology | 2008

Feasibility of Assessing the Community Composition of Prasinophytes at the Helgoland Roads Sampling Site with a DNA Microarray

Christine Gescher; Katja Metfies; Stephan Frickenhaus; Britta Knefelkamp; Karen Helen Wiltshire; Linda K. Medlin

ABSTRACT The microalgal class Prasinophyceae (Chlorophyta) contains several picoeukaryotic species, which are known to be common in temperate and cold waters and have been observed to constitute major fractions of marine picoplankton. However, reliable detection and classification of prasinophytes are mainly hampered by their small size and few morphological markers. Consequently, very little is known about the abundance and ecology of the members of this class. In order to facilitate the assessment of the abundance of the Prasinophyceae, we have designed and evaluated an 18S rRNA gene-targeted oligonucleotide microarray consisting of 21 probes targeting different taxonomic levels of prasinophytes. The microarray contains both previously published probes from other hybridization methods and new probes, which were designed for novel prasinophyte groups. The evaluation of the probe set was done under stringent conditions with 18S PCR fragments from 20 unialgal reference cultures used as positive targets. This microarray has been applied to assess the community composition of prasinophytes at Helgoland, an island in the North Sea where time series data are collected and analyzed daily but only for the nano- and microplankton-size fractions. There is no identification of prasinophytes other than to record them numerically in the flagellate fraction. The samples were collected every 2 weeks between February 2004 and December 2006. The study here demonstrates the potential of DNA microarrays to be applied as a tool for quick general monitoring of this important picoplanktonic algal group.


Global Change Biology | 2014

Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions

Daniela Storch; Lena Menzel; Stephan Frickenhaus; Hans-Otto Pörtner

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

Collaboration


Dive into the Stephan Frickenhaus's collaboration.

Top Co-Authors

Avatar

Magnus Lucassen

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus-Ulrich Valentin

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Katja Metfies

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Hiller

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Wolf

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Klaus Dethloff

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Annette Rinke

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Bank Beszteri

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge