Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Irle is active.

Publication


Featured researches published by Stephan Irle.


Nature Communications | 2013

Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

Jia Guo; Yanhong Xu; Shangbin Jin; Long Chen; Toshihiko Kaji; Yoshihito Honsho; Matthew Addicoat; Jangbae Kim; Akinori Saeki; Hyotcherl Ihee; Shu Seki; Stephan Irle; Masahiro Hiramoto; Jia Gao; Donglin Jiang

Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.


Journal of the American Chemical Society | 2011

An n-Channel Two-Dimensional Covalent Organic Framework

Xuesong Ding; Long Chen; Yoshihito Honsho; Xiao Feng; Oraphan Saengsawang; Jing-Dong Guo; Akinori Saeki; Shu Seki; Stephan Irle; Shigeru Nagase; Vudhichai Parasuk; Donglin Jiang

Co-condensation of metallophthalocyanine with an electron-deficient benzothiadiazole (BTDA) block leads to the formation of a two-dimensional covalent organic framework (2D-NiPc-BTDA COF) that assumes a belt shape and consists of AA stacking of 2D polymer sheets. Integration of BTDA blocks at the edges of a tetragonal metallophthalocyanine COF causes drastic changes in the carrier-transport mode and a switch from a hole-transporting skeleton to an electron-transporting framework. 2D-NiPc-BTDA COF exhibits broad and enhanced absorbance up to 1000 nm, shows panchromatic photoconductivity, is highly sensitive to near-infrared photons, and has excellent electron mobility as high as 0.6 cm(2) V(-1) s(-1).


Angewandte Chemie | 2012

High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction†

Xiao Feng; Lili Liu; Yoshihito Honsho; Akinori Saeki; Shu Seki; Stephan Irle; Yuping Dong; Atsushi Nagai; Donglin Jiang

Well conducted: a two-dimensional porphyrin covalent organic framework is described. Owing to the eclipsed stacking alignment, the framework is conductive and allows high-rate carrier transport through the porphyrin columns. The central metal in the porphyrin rings changes the conducting nature of the material from hole to electron, and to ambipolar conduction. It also drives the high on-off ratio photoconductivity of the framework.


Journal of the American Chemical Society | 2012

In Operando X-ray Absorption Fine Structure Studies of Polyoxometalate Molecular Cluster Batteries: Polyoxometalates as Electron Sponges

Heng Wang; Shun Hamanaka; Yoshio Nishimoto; Stephan Irle; Toshihiko Yokoyama; Hirofumi Yoshikawa; Kunio Awaga

We carried out in operando Mo K-edge X-ray absorption fine structure measurements on the rechargeable molecular cluster batteries (MCBs) of polyoxometalates (POMs), in which a Keggin-type POM, [PMo(12)O(40)](3-), is utilized as a cathode active material with a lithium metal anode. The POM-MCBs exhibit a large capacity of ca. 270 (A h)/kg in a voltage range between V = 4.0 V and V = 1.5 V. X-ray absorption near-edge structure analyses demonstrate that all 12 Mo(6+) ions in [PMo(12)O(40)](3-) are reduced to Mo(4+) in the discharging process. This means the formation of a super-reduced state of the POM, namely, [PMo(12)O(40)](27-), which stores 24 electrons, and this electron number can explain the large capacity of the POM-MCBs. Furthermore, extended X-ray absorption fine structure analyses reveal the molecular structure of [PMo(12)O(40)](27-), which is slightly reduced in size compared to the original [PMo(12)O(40)](3-) and involves Mo(4+) metal-metal-bonded triangles. Density functional theory calculations suggest that these triangles are formed because of the large number of additional electrons in the super-reduced state.


Advanced Materials | 2012

An Ambipolar Conducting Covalent Organic Framework with Self-Sorted and Periodic Electron Donor-Acceptor Ordering

Xiao Feng; Long Chen; Yoshihito Honsho; Oraphan Saengsawang; Lili Liu; Lu Wang; Akinori Saeki; Stephan Irle; Shu Seki; Yuping Dong; Donglin Jiang

Covalent organic frameworks (COFs) are crystalline polygons with permanent porosity that have potential application in gas adsorption and storage. [ 1–14 ] π -Electronic versions have also been prepared, by integrating aromatic building blocks into the polygon skeletons. [ 15–25 ] The unusual two-dimensional (2D) conformation endows the frameworks with crystallized layer structures, which could set π -components in face-to-face stacked columns and provide aligned conduction pathways. [ 19–27 ] It is highly interesting and remains a challenge if the unique 2D COF architecture can be explored for the construction of highly aligned donor (D) and acceptor (A) systems. The crystallization of electron donors (D) and acceptors (A) into macroscopic heterojunctions with segregated D and A


Angewandte Chemie | 2013

Charge Dynamics in A Donor–Acceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions

Shangbin Jin; Xuesong Ding; Xiao Feng; Mustafa Supur; Ko Furukawa; Seiya Takahashi; Matthew Addicoat; Mohamed E. El-Khouly; Toshikazu Nakamura; Stephan Irle; Shunichi Fukuzumi; Atsushi Nagai; Donglin Jiang

The donor–acceptor heterojunction is a key structure in current technologies, including transistors, light-emitting diodes, and photovoltaics, because it controls the charge dynamics in the devices. Covalent organic frameworks (COFs) are crystalline molecular skeletons that allow atomically precise integration of building blocks into periodic array structures. In this regard, we have demonstrated arene, porphyrin, and phthalocyanine COFs that provide periodically ordered columnar arrays of p-components and show outstanding semiconducting and photoconductive properties. We recently synthesized a donor–acceptor COF that gives rise to a periodically ordered bicontinuous heterojunction structure and self-sorted donor and acceptor columnar arrays separated at nanometer-scale intervals. This nanoscopic segregation morphology forms a broad interface for charge separation, provides ambipolar pathways for charge collection, and would be ideal for the current semiconducting devices that involve photoenergy transformations; however, the charge dynamics, which is a key mechanism that controls the energy transformation, remains unclear. Here, we report the charge dynamics of a donor–acceptor COF, which were determined using time-resolved spectroscopy to elucidate the photochemical processes of the free charges from their generation to delocalization and retention. In the COF, the heterojunctions allow an ultrafast electron transfer from the donor to the acceptor columns. Consequently, the light absorption is directly coupled with charge dissociation to generate free charges in the donor and acceptor p-columns within 2 ps. On the other hand, the stacked p-columns delocalize the charges, suppress charge recombination, and retain the charges for a prolonged period of time. We show that both solvated and solid-state COFs enable rapid charge separation and exceptional long-term charge retention, thereby providing a key mechanistic basis to envisage the high potential of donor–acceptor COFs for photoelectric applications. The donor–acceptor COF (Scheme 1a, DZnPc-ANDI-COF) is a tetragonal, mesoporous 2D framework that is composed of zinc phthalocyanine as an electron donor and naphthalene diimide as an acceptor. In the COF, the two p-units are alternately linked within an electron-transfer distance and at a dihedral angle of approximately 428. The COF provides selfsorted, bicontinuous columnar arrays and constitutes periodically structured heterojunctions in which each donor column is interfaced with four acceptor columns that are equally active in capturing photo-generated electrons (Scheme 1b). The DZnPc-ANDI-COF absorbs light over a broad visible and near-infrared region up to 1100 nm (Figure S1 in the Supporting Information). Elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron microscopy confirmed the formation of the COF (Figure S2–S4 and Table S1). The same COF has been reported as a thin film. The DZnPc-ANDI-COF exhibited a type IV nitrogen sorption curve that is characteristic of mesoporous frameworks (Figure 1a). The Brunauer–Emmett–Teller surface area and pore volume were calculated as 1410 mg 1 and 1.25 cmg , respectively. The pore-size distribution profile with a range up


Journal of Chemical Theory and Computation | 2007

Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method : Sc, Ti, Fe, Co, and Ni

Guishan Zheng; Henryk A. Witek; Petia Bobadova-Parvanova; Stephan Irle; Djamaladdin G. Musaev; Rajeev Prabhakar; Keiji Morokuma; Marcus Lundberg; Marcus Elstner; Christof Köhler; Thomas Frauenheim

Recently developed parameters for five first-row transition-metal elements (M = Sc, Ti, Fe, Co, and Ni) in combination with H, C, N, and O as well as the same metal (M-M) for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method have been calibrated. To test their performance a couple sets of compounds have been selected to represent a variety of interactions and bonding schemes that occur frequently in transition-metal containing systems. The results show that the DFTB method with the present parameters in most cases reproduces structural properties very well, but the bond energies and the relative energies of different spin states only qualitatively compared to the B3LYP/SDD+6-31G(d) density functional (DFT) results. An application to the ONIOM(DFT:DFTB) indicates that DFTB works well as the low level method for the ONIOM calculation.


Journal of the American Chemical Society | 2013

Control of Crystallinity and Porosity of Covalent Organic Frameworks by Managing Interlayer Interactions Based on Self-Complementary π-Electronic Force

Xiong Chen; Matthew Addicoat; Stephan Irle; Atsushi Nagai; Donglin Jiang

Crystallinity and porosity are crucial for crystalline porous covalent organic frameworks (COFs). Here we report synthetic control over the crystallinity and porosity of COFs by managing interlayer interactions based on self-complementary π-electronic forces. Fluoro-substituted and nonsubstituted aromatic units at different molar ratios were integrated into the edge units that stack to trigger self-complementary π-electronic interactions in the COFs. The interactions improve the crystallinity and enhance the porosity by maximizing the total crystal stacking energy and minimizing the unit cell size. Consequently, the COF consisting of equimolar amounts of fluoro-substituted and nonsubstituted units showed the largest effect. These results suggest a new approach to the design of COFs by managing the interlayer interactions.


Journal of the American Chemical Society | 2015

Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity

Xiong Chen; Matthew Addicoat; Enquan Jin; Lipeng Zhai; Hong Xu; Ning Huang; Zhaoqi Guo; Lili Liu; Stephan Irle; Donglin Jiang

A series of two-dimensional covalent organic frameworks (2D COFs) locked with intralayer hydrogen-bonding (H-bonding) interactions were synthesized. The H-bonding interaction sites were located on the edge units of the imine-linked tetragonal porphyrin COFs, and the contents of the H-bonding sites in the COFs were synthetically tuned using a three-component condensation system. The intralayer H-bonding interactions suppress the torsion of the edge units and lock the tetragonal sheets in a planar conformation. This planarization enhances the interlayer interactions and triggers extended π-cloud delocalization over the 2D sheets. Upon AA stacking, the resulting COFs with layered 2D sheets amplify these effects and strongly affect the physical properties of the material, including improving their crystallinity, enhancing their porosity, increasing their light-harvesting capability, reducing their band gap, and enhancing their photocatalytic activity toward the generation of singlet oxygen. These remarkable effects on the structure and properties of the material were observed for both freebase and metalloporphyin COFs. These results imply that exploration of supramolecular ensembles would open a new approach to the structural and functional design of COFs.


Nature Communications | 2015

Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies

Sasanka Dalapati; Matthew Addicoat; Shangbin Jin; Tsuneaki Sakurai; Jia Gao; Hong Xu; Stephan Irle; Shu Seki; Donglin Jiang

Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm−2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles.

Collaboration


Dive into the Stephan Irle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donglin Jiang

Japan Advanced Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henryk A. Witek

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge