Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Karl is active.

Publication


Featured researches published by Stephan Karl.


PLOS Medicine | 2015

Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model

Leanne J. Robinson; Rahel Wampfler; Inoni Betuela; Stephan Karl; Michael T. White; Connie S. N. Li Wai Suen; Natalie E. Hofmann; Benson Kinboro; Andreea Waltmann; Jessica Brewster; Lina Lorry; Nandao Tarongka; Lornah Samol; Mariabeth Silkey; Quique Bassat; Peter Siba; Louis Schofield; Ingrid Felger; Ivo Mueller

Background The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children. Methods and Findings From 17 August 2009 to 20 May 2010, 524 children aged 5–10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Children who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI 0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage infection at the time of treatment (p = 0.14). Modelling revealed that mass screening and treatment with highly sensitive quantitative real-time PCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly effective strategy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime maximises the efficiency of hypnozoite clearance but limits the generalisability of results to real-world MDA programmes. Conclusions These results suggest that relapses cause approximately four of every five P. vivax infections and at least three of every five P. ovale infections in PNG children and are important in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale transmission. Trial registration ClinicalTrials.gov NCT02143934


Malaria Journal | 2008

Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission.

Stephan Karl; Makindi David; Lee R. Moore; Brian T. Grimberg; Pascal Michon; Ivo Mueller; Maciej Zborowski; Peter A. Zimmerman

BackgroundAggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG).Methods and findingsIndividuals with Plasmodium falciparum malaria symptoms (n = 55) provided samples for conventional blood smear (CBS) and magnetic deposition microscopy (MDM) diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS) for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13), trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01), schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08) and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002) parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively.ConclusionMDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.


eLife | 2014

Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission

Michael T. White; Stephan Karl; Katherine E. Battle; Simon I. Hay; Ivo Mueller; Azra C. Ghani

Plasmodium vivax relapse infections occur following activation of latent liver-stages parasites (hypnozoites) causing new blood-stage infections weeks to months after the initial infection. We develop a within-host mathematical model of liver-stage hypnozoites, and validate it against data from tropical strains of P. vivax. The within-host model is embedded in a P. vivax transmission model to demonstrate the build-up of the hypnozoite reservoir following new infections and its depletion through hypnozoite activation and death. The hypnozoite reservoir is predicted to be over-dispersed with many individuals having few or no hypnozoites, and some having intensely infected livers. Individuals with more hypnozoites are predicted to experience more relapses and contribute more to onwards P. vivax transmission. Incorporating hypnozoite killing drugs such as primaquine into first-line treatment regimens is predicted to cause substantial reductions in P. vivax transmission as individuals with the most hypnozoites are more likely to relapse and be targeted for treatment. DOI: http://dx.doi.org/10.7554/eLife.04692.001


PLOS ONE | 2014

Evaluation of a Novel Magneto-Optical Method for the Detection of Malaria Parasites

Ágnes Orbán; Ádám Butykai; András Molnár; Zsófia Pröhle; Gergö Fülöp; Tivadar Zelles; Wasan Forsyth; Danika L. Hill; Ivo Muller; Louis Schofield; Maria Rebelo; Thomas Hänscheid; Stephan Karl; István Kézsmárki

Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/µL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.


Proceedings of the Royal Society B: Biological Sciences | 2016

Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria

Michael T. White; George Shirreff; Stephan Karl; Azra C. Ghani; Ivo Mueller

There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes.


PLOS ONE | 2015

Preterm or not--an evaluation of estimates of gestational age in a cohort of women from Rural Papua New Guinea.

Stephan Karl; Connie S. N. Li Wai Suen; Holger W. Unger; Maria Ome-Kaius; Glen Mola; Lisa J. White; Stephen J. Rogerson; Ivo Mueller

Background Knowledge of accurate gestational age is required for comprehensive pregnancy care and is an essential component of research evaluating causes of preterm birth. In industrialised countries gestational age is determined with the help of fetal biometry in early pregnancy. Lack of ultrasound and late presentation to antenatal clinic limits this practice in low-resource settings. Instead, clinical estimators of gestational age are used, but their accuracy remains a matter of debate. Methods In a cohort of 688 singleton pregnancies from rural Papua New Guinea, delivery gestational age was calculated from Ballard score, last menstrual period, symphysis-pubis fundal height at first visit and quickening as well as mid- and late pregnancy fetal biometry. Published models using sequential fundal height measurements and corrected last menstrual period to estimate gestational age were also tested. Novel linear models that combined clinical measurements for gestational age estimation were developed. Predictions were compared with the reference early pregnancy ultrasound (<25 gestational weeks) using correlation, regression and Bland-Altman analyses and ranked for their capability to predict preterm birth using the harmonic mean of recall and precision (F-measure). Results Average bias between reference ultrasound and clinical methods ranged from 0–11 days (95% confidence levels: 14–42 days). Preterm birth was best predicted by mid-pregnancy ultrasound (F-measure: 0.72), and neuromuscular Ballard score provided the least reliable preterm birth prediction (F-measure: 0.17). The best clinical methods to predict gestational age and preterm birth were last menstrual period and fundal height (F-measures 0.35). A linear model combining both measures improved prediction of preterm birth (F-measure: 0.58). Conclusions Estimation of gestational age without ultrasound is prone to significant error. In the absence of ultrasound facilities, last menstrual period and fundal height are among the more reliable clinical measures. This study underlines the importance of strengthening ultrasound facilities and developing novel ways to estimate gestational age.


Malaria Journal | 2015

Temporal changes in Plasmodium falciparum anti-malarial drug sensitivity in vitro and resistance-associated genetic mutations in isolates from Papua New Guinea

Tamarah Koleala; Stephan Karl; Moses Laman; Brioni R. Moore; John Benjamin; Céline Barnadas; Leanne J. Robinson; Johanna Helena Kattenberg; Sarah Javati; Rina Pm Wong; Anna Rosanas-Urgell; Inoni Betuela; Peter Siba; Ivo Mueller; Timothy M. E. Davis

BackgroundIn northern Papua New Guinea (PNG), most Plasmodium falciparum isolates proved resistant to chloroquine (CQ) in vitro between 2005 and 2007, and there was near-fixation of pfcrt K76T, pfdhfr C59R/S108N and pfmdr1 N86Y. To determine whether the subsequent introduction of artemisinin combination therapy (ACT) and reduced CQ-sulphadoxine-pyrimethamine pressure had attenuated parasite drug susceptibility and resistance-associated mutations, these parameters were re-assessed between 2011 and 2013.MethodsA validated fluorescence-based assay was used to assess growth inhibition of 52 P. falciparum isolates from children in a clinical trial in Madang Province. Responses to CQ, lumefantrine, piperaquine, naphthoquine, pyronaridine, artesunate, dihydroartemisinin, artemether were assessed. Molecular resistance markers were detected using a multiplex PCR ligase detection reaction fluorescent microsphere assay.ResultsCQ resistance (in vitro concentration required for 50% parasite growth inhibition (IC50) >100 nM) was present in 19% of isolates. All piperaquine and naphthoquine IC50s were <100 nM and those for lumefantrine, pyronaridine and the artemisinin derivatives were in low nM ranges. Factor analysis of IC50s showed three groupings (lumefantrine; CQ, piperaquine, naphthoquine; pyronaridine, dihydroartemisinin, artemether, artesunate). Most isolates (96%) were monoclonal pfcrt K76T (SVMNT) mutants and most (86%) contained pfmdr1 N86Y (YYSND). No wild-type pfdhfr was found but most isolates contained wild-type (SAKAA) pfdhps. Compared with 2005–2007, the geometric mean (95% CI) CQ IC50 was lower (87 (71–107) vs 167 (141–197) nM) and there had been no change in the prevalence of pfcrt K76T or pfmdr1 mutations. There were fewer isolates of the pfdhps (SAKAA) wild-type (60 vs 100%) and pfdhfr mutations persisted.ConclusionsReflecting less drug pressure, in vitro CQ sensitivity appears to be improving in Madang Province despite continued near-fixation of pfcrt K76T and pfmdr1 mutations. Temporal changes in IC50s for other anti-malarial drugs were inconsistent but susceptibility was preserved. Retention or increases in pfdhfr and pfdhps mutations reflect continued use of sulphadoxine-pyrimethamine in the study area including through paediatric intermittent preventive treatment. The susceptibility of local isolates to lumefantrine may be unrelated to those of other ACT partner drugs.Trial registrationAustralian New Zealand Clinical Trials Registry ACTRN12610000913077.


Malaria Journal | 2014

Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria.

Stephan Karl; Moses Laman; Tamarah Koleala; Clemencia Ibam; Bernadine Kasian; Nola N’Drewei; Anna Rosanas-Urgell; Brioni R. Moore; Andreea Waltmann; Peter Siba; Inoni Betuela; Robert C. Woodward; Timothy G. St. Pierre; Ivo Mueller; Timothy M. E. Davis

BackgroundGametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.MethodsPeripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.ResultsMF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.ConclusionsThe present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR.


International Journal for Parasitology | 2015

The affinity of magnetic microspheres for Schistosoma eggs

Renata Russo Frasca Candido; Vivian Favero; Mary Duke; Stephan Karl; Lucía Gutiérrez; Robert C. Woodward; Carlos Graeff-Teixeira; Malcolm K. Jones; Timothy G. St. Pierre

Schistosomiasis is a chronic parasitic disease of humans, with two species primarily causing the intestinal infection: Schistosoma mansoni and Schistosoma japonicum. Traditionally, diagnosis of schistosomiasis is achieved through direct visualisation of eggs in faeces using techniques that lack the sensitivity required to detect all infections, especially in areas of low endemicity. A recently developed method termed Helmintex™ is a very sensitive technique for detection of Schistosoma eggs and exhibits 100% sensitivity at 1.3 eggs per gram of faeces, enough to detect even low-level infections. The Helminthex™ method is based on the interaction of magnetic microspheres and schistosome eggs. Further understanding the underlying egg-microsphere interactions would enable a targeted optimisation of egg-particle binding and may thus enable a significant improvement of the Helmintex™ method and diagnostic sensitivity in areas with low infection rates. We investigated the magnetic properties of S. mansoni and S. japonicum eggs and their interactions with microspheres with different magnetic properties and surface functionalization. Eggs of both species exhibited higher binding affinity to the magnetic microspheres than the non-magnetic microspheres. Binding efficiency was further enhanced if the particles were coated with streptavidin. Schistosoma japonicum eggs bound more microspheres compared with S. mansoni. However, distinct differences within eggs of each species were also observed when the distribution of the number of microspheres bound per egg was modelled with double Poisson distributions. Using this approach, both S. japonicum and S. mansoni eggs fell into two groups, one having greater affinity for magnetic microspheres than the other, indicating that not all eggs of a species exhibit the same binding affinity. Our observations suggest that interaction between the microspheres and eggs is more likely to be related to surface charge-based electrostatic interactions between eggs and magnetic iron oxide rather than through a direct magnetic interaction.


American Journal of Tropical Medicine and Hygiene | 2011

Nuclear Magnetic Resonance: A Tool for Malaria Diagnosis?

Stephan Karl; Lucía Gutiérrez; Michael J. House; Timothy M. E. Davis; Timothy G. St. Pierre

Malaria control can be improved by rapid, sensitive, low-cost detection of infection. Several such strategies are being pursued. Rapid diagnostic tests can detect infections at parasite densities above 200 μL(-1). Polymerase chain reaction methods can detect low parasite densities, but are slow and prone to contamination under field conditions. Methods that detect hemozoin presence in blood have been proposed as alternatives for rapid detection of infection. In this study, we used a benchtop nuclear magnetic resonance (NMR) device to detect hemozoin. This device could be deployed in malaria-endemic settings. We measured synthetic hemozoin in phosphate-buffered saline and malaria parasites in human blood. The NMR detected hemozoin in suspensions of 4 ng μL(-1) and parasites at densities of 8,000-10,000 μL(-1) (0.2% parasitemia). Thus, our preliminary NMR approach, although providing very rapid measurements, is unlikely to achieve the required sensitivity and specificity for malaria diagnosis, unless a preliminary concentration step is performed.

Collaboration


Dive into the Stephan Karl's collaboration.

Top Co-Authors

Avatar

Ivo Mueller

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Leanne J. Robinson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Peter Siba

Papua New Guinea Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Timothy G. St. Pierre

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Timothy M. E. Davis

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Andreea Waltmann

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Inoni Betuela

Papua New Guinea Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Moses Laman

Papua New Guinea Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Brioni R. Moore

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge