Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Ossowski is active.

Publication


Featured researches published by Stephan Ossowski.


The Plant Cell | 2006

Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis

Rebecca Schwab; Stephan Ossowski; Markus Riester; Norman Warthmann; Detlef Weigel

Plant microRNAs (miRNAs) affect only a small number of targets with high sequence complementarity, while animal miRNAs usually have hundreds of targets with limited complementarity. We used artificial miRNAs (amiRNAs) to determine whether the narrow action spectrum of natural plant miRNAs reflects only intrinsic properties of the plant miRNA machinery or whether it is also due to past selection against natural miRNAs with broader specificity. amiRNAs were designed to target individual genes or groups of endogenous genes. Like natural miRNAs, they had varying numbers of target mismatches. Previously determined parameters of target selection for natural miRNAs could accurately predict direct targets of amiRNAs. The specificity of amiRNAs, as deduced from genome-wide expression profiling, was as high as that of natural plant miRNAs, supporting the notion that extensive base pairing with targets is required for plant miRNA function. amiRNAs make an effective tool for specific gene silencing in plants, especially when several related, but not identical, target genes need to be downregulated. We demonstrate that amiRNAs are also active when expressed under tissue-specific or inducible promoters, with limited nonautonomous effects. The design principles for amiRNAs have been generalized and integrated into a Web-based tool (http://wmd.weigelworld.org).


Science | 2010

The Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana

Stephan Ossowski; Korbinian Schneeberger; José Ignacio Lucas-Lledó; Norman Warthmann; Richard M. Clark; Ruth G. Shaw; Detlef Weigel; Michael Lynch

Evolution in Action Rates of evolution in gene and genome sequences have been estimated, but these estimates are subject to error because many of the steps of evolution over the ages are not directly measurable or are hidden under subsequent changes. Ossowski et al. (p. 92) now provide a more accurate measurement of how often spontaneous mutations arise in a nuclear genome. Mutations arising over 30 generations were compared by sequencing DNA from individual Arabidopsis thaliana plants. UV- and deamination-induced mutagenesis appeared to bias the type of mutations found. Rapid sequencing technologies allow a more accurate calculation of the mutation rate for plants. To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 × 10−9 base substitutions per site per generation, the majority of which are G:C→A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light–induced mutagenesis.


Nature Genetics | 2011

The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

Tina T. Hu; Pedro Pattyn; Erica G. Bakker; Jun Cao; Jan Fang Cheng; Richard M. Clark; Noah Fahlgren; Jeffrey A. Fawcett; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Jesse D. Hollister; Stephan Ossowski; Robert P. Ottilar; Asaf Salamov; Korbinian Schneeberger; Manuel Spannagl; Xi Wang; Liang Yang; Mikhail E. Nasrallah; Joy Bergelson; James C. Carrington; Brandon S. Gaut; Jeremy Schmutz; Klaus F. X. Mayer; Yves Van de Peer; Igor V. Grigoriev; Magnus Nordborg; Detlef Weigel; Ya-Long Guo

We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.


Plant Journal | 2008

Gene silencing in plants using artificial microRNAs and other small RNAs

Stephan Ossowski; Rebecca Schwab; Detlef Weigel

Comprehensive analysis of gene function requires the detailed examination of mutant alleles. In Arabidopsis thaliana, large collections of sequence-indexed insertion and chemical mutants provide potential loss-of-function alleles for most annotated genes. However, limitations for phenotypic analysis include gametophytic or early sporophytic lethality, and the ability to recombine mutant alleles in closely linked genes, especially those present as tandem duplications. Transgene-mediated gene silencing can overcome some of these shortcomings through tissue-specific, inducible and partial gene inactivation, or simultaneous targeting of several, sequence-related genes. In addition, gene silencing is a convenient approach in species or varieties for which exhaustive mutant collections are not yet available. Typically, gene function is reduced post-transcriptionally, effected by small RNAs that act in a sequence-specific manner by base pairing to complementary mRNA molecules. A recently introduced approach is the use of artificial microRNAs (amiRNAs). Here, we review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species.


Genome Research | 2008

Sequencing of natural strains of Arabidopsis thaliana with short reads

Stephan Ossowski; Korbinian Schneeberger; Richard M. Clark; Christa Lanz; Norman Warthmann; Detlef Weigel

Whole-genome hybridization studies have suggested that the nuclear genomes of accessions (natural strains) of Arabidopsis thaliana can differ by several percent of their sequence. To examine this variation, and as a first step in the 1001 Genomes Project for this species, we produced 15- to 25-fold coverage in Illumina sequencing-by-synthesis (SBS) reads for the reference accession, Col-0, and two divergent strains, Bur-0 and Tsu-1. We aligned reads to the reference genome sequence to assess data quality metrics and to detect polymorphisms. Alignments revealed 823,325 unique single nucleotide polymorphisms (SNPs) and 79,961 unique 1- to 3-bp indels in the divergent accessions at a specificity of >99%, and over 2000 potential errors in the reference genome sequence. We also identified >3.4 Mb of the Bur-0 and Tsu-1 genomes as being either extremely dissimilar, deleted, or duplicated relative to the reference genome. To obtain sequences for these regions, we incorporated the Velvet assembler into a targeted de novo assembly method. This approach yielded 10,921 high-confidence contigs that were anchored to flanking sequences and harbored indels as large as 641 bp. Our methods are broadly applicable for polymorphism discovery in moderate to large genomes even at highly diverged loci, and we established by subsampling the Illumina SBS coverage depth required to inform a broad range of functional and evolutionary studies. Our pipeline for aligning reads and predicting SNPs and indels, SHORE, is available for download at http://1001genomes.org.


Nature Methods | 2009

SHOREmap: simultaneous mapping and mutation identification by deep sequencing

Korbinian Schneeberger; Stephan Ossowski; Christa Lanz; Trine Juul; Annabeth Høgh Petersen; Kåre Lehmann Nielsen; Jan-Elo Jørgensen; Detlef Weigel; Stig Uggerhø Andersen

Supplementary Figure 1 Method workflow Supplementary Figure 2 Visual output from SHOREmap DENOVO Supplementary Table 1 Top 10 ranked mutations from the SHOREmap ANNOTATE output Supplementary Table 2 Command line programs, parameters and run time used for the computational analysis of Illumina data Supplementary Table 3 Identification of additional AT4G35090 mutant alleles Supplementary Table 4 Output of SHOREmap ANNOTATE using the interval based on SHOREmap DENOVO data Supplementary Note Mapping large deletions, QTLs and dominant or recessive lethal mutations. Supplementary Methods Lab protocols and computational algorithms Supplementary Data SHORE and SHOREmap example files


Cell | 2010

Transcriptional Control of Gene Expression by MicroRNAs

Basel Khraiwesh; M. Asif Arif; Gotelinde I. Seumel; Stephan Ossowski; Detlef Weigel; Ralf Reski; Wolfgang Frank

MicroRNAs (miRNAs) control gene expression in animals and plants. Like another class of small RNAs, siRNAs, they affect gene expression posttranscriptionally. While siRNAs in addition act in transcriptional gene silencing, a role of miRNAs in transcriptional regulation has been less clear. We show here that in moss Physcomitrella patens mutants without a DICER-LIKE1b gene, maturation of miRNAs is normal but cleavage of target RNAs is abolished and levels of these transcripts are drastically reduced. These mutants accumulate miRNA:target-RNA duplexes and show hypermethylation of the genes encoding target RNAs, leading to gene silencing. This pathway occurs also in the wild-type upon hormone treatment. We propose that initiation of epigenetic silencing by DNA methylation depends on the ratio of the miRNA and its target RNA.


Plant Journal | 2009

Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii

Attila Molnar; Andrew Bassett; Eva C. Thuenemann; Frank Schwach; Shantanu Karkare; Stephan Ossowski; Detlef Weigel; David C. Baulcombe

MicroRNAs (miRNAs) are small RNAs, 21 to 22 nucleotides long, with important regulatory roles. They are processed from longer RNA molecules with imperfectly matched foldback regions and they function in modulating the stability and translation of mRNA. Recently, we and others have demonstrated that the unicellular alga Chlamydomonas reinhardtii, like diverse multicellular organisms, contains miRNAs. These RNAs resemble the miRNAs of land plants in that they direct site-specific cleavage of target mRNA with miRNA-complementary motifs and, presumably, act as regulatory molecules in growth and development. Utilizing these findings we have developed a novel artificial miRNA system based on ligation of DNA oligonucleotides that can be used for specific high-throughput gene silencing in green algae.


PLOS ONE | 2008

Highly Specific Gene Silencing by Artificial miRNAs in Rice

Norman Warthmann; Hao Chen; Stephan Ossowski; Detlef Weigel; Philippe Hervé

Background Endogenous microRNAs (miRNAs) are potent negative regulators of gene expression in plants and animals. Artificial miRNAs (amiRNAs)–designed to target one or several genes of interest–provide a new and highly specific approach for effective post-transcriptional gene silencing (PTGS) in plants. Methodology We devised an amiRNA-based strategy for both japonica and indica type strains of cultivated rice, Oryza sativa. Using an endogenous rice miRNA precursor and customized 21mers, we designed amiRNA constructs targeting three different genes (Pds, Spl11, and Eui1/CYP714D1). Upon constitutive expression of these amiRNAs in the varieties Nipponbare (japonica) and IR64 (indica), the targeted genes are down-regulated by amiRNA-guided cleavage of the transcripts, resulting in the expected mutant phenotypes. The effects are highly specific to the target gene, the transgenes are stably inherited and they remain effective in the progeny. Conclusion/Significance Our results not only show that amiRNAs can efficiently trigger gene silencing in a monocot crop, but also that amiRNAs can effectively modulate agronomically important traits in varieties used in modern breeding programs. We provide all software tools and a protocol for the design of rice amiRNA constructs, which can be easily adapted to other crops. The approach is suited for candidate gene validation, comparative functional genomics between different varieties, and for improvement of agronomic performance and nutritional value.


Nature | 2009

Selective epigenetic control of retrotransposition in Arabidopsis

Marie Mirouze; Jon Reinders; Etienne Bucher; Taisuke Nishimura; Korbinian Schneeberger; Stephan Ossowski; Jun Cao; Detlef Weigel; Jerzy Paszkowski; Olivier Mathieu

Retrotransposons are mobile genetic elements that populate chromosomes, where the host largely controls their activities. In plants and mammals, retrotransposons are transcriptionally silenced by DNA methylation, which in Arabidopsis is propagated at CG dinucleotides by METHYLTRANSFERASE 1 (MET1). In met1 mutants, however, mobilization of retrotransposons is not observed, despite their transcriptional activation. A post-transcriptional mechanism therefore seems to be preventing retrotransposition. Here we show that a copia-type retrotransposon (Évadé, French for ‘fugitive’) evaded suppression of its movement during inbreeding of hybrid epigenomes consisting of met1- and wild-type-derived chromosomes. Évadé (EVD) reinsertions caused a series of developmental mutations that allowed its identification. Genetic testing of host control of the EVD life cycle showed that transcriptional suppression occurred by CG methylation supported by RNA-directed DNA methylation. On transcriptional reactivation, subsequent steps of the EVD cycle were inhibited by plant-specific RNA polymerase IV/V and the histone methyltransferase KRYPTONITE (KYP). Moreover, genome resequencing demonstrated retrotransposition of EVD but no other potentially active retroelements when this combination of epigenetic mechanisms was compromised. Our results demonstrate that epigenetic control of retrotransposons extends beyond transcriptional suppression and can be individualized for particular elements.

Collaboration


Dive into the Stephan Ossowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Zapata

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge