Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Riek is active.

Publication


Featured researches published by Stephan Riek.


The Journal of Physiology | 2002

The sites of neural adaptation induced by resistance training in humans

Timothy J. Carroll; Stephan Riek; Richard G. Carson

Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n= 8), or training involving finger abduction‐adduction without external resistance (n= 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance‐training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance‐training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex.


Journal of Neuroscience Methods | 2001

Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation

Timothy J. Carroll; Stephan Riek; Richard G. Carson

The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 microV at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R2=0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC=0.63 and 0.78, respectively) than for TMS (ICC=0.50 and 0.53, respectively). These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity.


Sports Medicine | 2001

Neural Adaptations to Resistance Training Implications for Movement Control

Timothy J. Carroll; Stephan Riek; Richard G. Carson

AbstractIt has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks.We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in related functional tasks.


The Journal of Physiology | 2002

Central and peripheral mediation of human force sensation following eccentric or concentric contractions

Richard G. Carson; Stephan Riek; Nosratollah Shahbazpour

Fatigue was induced in the triceps brachii of the experimental arm by a regimen of either eccentric or concentric muscle actions. Estimates of force were assessed using a contralateral limb‐matching procedure, in which target force levels (25 %, 50 % or 75 % of maximum) were defined by the unfatigued control arm. Maximum isometric force‐generating capacity was reduced by 31 % immediately following eccentric contractions, and remained depressed at 24 (25 %) and 48 h (13 %) post‐exercise. A less marked reduction (8.3 %) was observed immediately following concentric contractions. Those participants who performed prior eccentric contractions, consistently (at all force levels), and persistently (throughout the recovery period), overestimated the level of force applied by the experimental arm. In other words, they believed that they were generating more force than they actually achieved. When the forces applied by the experimental and the control arm, were each expressed as a proportion of the maximum force that could be attained at that time, the estimates matched extremely closely. This outcome is that which would be expected if the estimates of force were based on a sense of effort. Following eccentric exercise, the amplitude of the EMG activity recorded from the experimental arm was substantially greater than that recorded from the control arm. Cortically evoked potentials recorded from the triceps brachii (and extensor carpi radialis) of the experimental arm were also substantially larger than those elicited prior to exercise. The sense of effort was evidently not based upon a corollary of the central motor command. Rather, the relationship between the sense of effort and the motor command appears to have been altered as a result of the fatiguing eccentric contractions. It is proposed that the sense of effort is associated with activity in neural centres upstream of the motor cortex.


Sports Medicine | 2001

Neural influences on sprint running: training adaptations and acute responses.

Angus Ross; Michael Leveritt; Stephan Riek

AbstractPerformance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance.An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest H-reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes.Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage.Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.


Sports Medicine | 2006

Proprioceptive neuromuscular facilitation stretching : mechanisms and clinical implications.

Melanie J. Sharman; Andrew G. Cresswell; Stephan Riek

Proprioceptive neuromuscular facilitation (PNF) stretching techniques are commonly used in the athletic and clinical environments to enhance both active and passive range of motion (ROM) with a view to optimising motor performance and rehabilitation. PNF stretching is positioned in the literature as the most effective stretching technique when the aim is to increase ROM, particularly in respect to short-term changes in ROM. With due consideration of the heterogeneity across the applied PNF stretching research, a summary of the findings suggests that an ‘active’ PNF stretching technique achieves the greatest gains in ROM, e.g. utilising a shortening contraction of the opposing muscle to place the target muscle on stretch, followed by a static contraction of the target muscle. The inclusion of a shortening contraction of the opposing muscle appears to have the greatest impact on enhancing ROM. When including a static contraction of the target muscle, this needs to be held for approximately 3 seconds at no more than 20% of a maximum voluntary contraction. The greatest changes in ROM generally occur after the first repetition and in order to achieve more lasting changes in ROM, PNF stretching needs to be performed once or twice per week. The superior changes in ROM that PNF stretching often produces compared with other stretching techniques has traditionally been attributed to autogenic and/or reciprocal inhibition, although the literature does not support this hypothesis. Instead, and in the absence of a biomechanical explanation, the contemporary view proposes that PNF stretching influences the point at which stretch is perceived or tolerated. The mechanism(s) underpinning the change in stretch perception or tolerance are not known, although pain modulation has been suggested.


Current Biology | 2000

Interhemispheric switching mediates perceptual rivalry

S. M. Miller; G. B. Liu; Trung Thanh Ngo; G. S. Hooper; Stephan Riek; Richard G. Carson; John D. Pettigrew

BACKGROUND Binocular rivalry refers to the alternating perceptual states that occur when the images seen by the two eyes are too different to be fused into a single percept. Logothetis and colleagues have challenged suggestions that this phenomenon occurs early in the visual pathway. They have shown that, in alert monkeys, neurons in the primary visual cortex continue to respond to their preferred stimulus despite the monkey reporting its absence. Moreover, they found that neural activity higher in the visual pathway is highly correlated with the monkeys reported percept. These and other findings suggest that the neural substrate of binocular rivalry must involve high levels, perhaps the same levels involved in reversible figure alternations. RESULTS We present evidence that activation or disruption of a single hemisphere in human subjects affects the perceptual alternations of binocular rivalry. Unilateral caloric vestibular stimulation changed the ratio of time spent in each competing perceptual state. Transcranial magnetic stimulation applied to one hemisphere disrupted normal perceptual alternations when the stimulation was timed to occur at one phase of the perceptual switch, but not at the other. Furthermore, activation of a single hemisphere by caloric stimulation affected the perceptual alternations of a reversible figure, the Necker cube. CONCLUSIONS Our findings suggest that interhemispheric switching mediates perceptual rivalry. Thus, competition for awareness in both binocular rivalry and reversible figures occurs between, rather than within, each hemisphere. This interhemispheric switch hypothesis has implications for understanding the neural mechanisms of conscious experience and also has clinical relevance as the rate of both types of perceptual rivalry is slow in bipolar disorder (manic depression).


The Journal of Physiology | 2004

Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb.

Richard G. Carson; Stephan Riek; D.C. Mackey; D.P. Meichenbaum; K. Willms; M. Forner; Winston D. Byblow

Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase‐locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of  bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary‐evoked potentials, CMEPs), to peripheral nerve stimulation (H‐reflexes and f‐waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H‐reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f‐waves did not vary in corresponding fashion, it appears that the phasic modulation of the H‐reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H‐reflexes and f‐waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.


European Journal of Neurology | 2011

Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke

Caroline H. S. Barwood; Bruce E. Murdoch; Brooke-Mai Whelan; David Lloyd; Stephan Riek; John D. O’Sullivan; Alan Coulthard; Andrew Wong

Background:  Low‐frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential tool for neurorehabilitation and remediation of language in chronic non‐fluent aphasia post‐stroke. Inhibitory (1 Hz) rTMS has been applied to homologous language sites to facilitate behavioural language changes. Improvements in picture‐naming performance and speech output over time have been reported.


Acta Physiologica | 2011

Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies

Timothy J. Carroll; Victor Selvarajah Selvanayagam; Stephan Riek; John G. Semmler

It has long been believed that training for increased strength not only affects muscle tissue, but also results in adaptive changes in the central nervous system. However, only in the last 10 years has the use of methods to study the neurophysiological details of putative neural adaptations to training become widespread. There are now many published reports that have used single motor unit recordings, electrical stimulation of peripheral nerves, and non‐invasive stimulation of the human brain [i.e. transcranial magnetic stimulation (TMS)] to study neural responses to strength training. In this review, we aim to summarize what has been learned from single motor unit, reflex and TMS studies, and identify the most promising avenues to advance our conceptual understanding with these methods. We also consider the few strength training studies that have employed alternative neurophysiological techniques such as functional magnetic resonance imaging and electroencephalography. The nature of the information that these techniques can provide, as well as their major technical and conceptual pitfalls, are briefly described. The overall conclusion of the review is that the current evidence regarding neural adaptations to strength training is inconsistent and incomplete. In order to move forward in our understanding, it will be necessary to design studies that are based on a rigorous consideration of the limitations of the available techniques, and that are specifically targeted to address important conceptual questions.

Collaboration


Dive into the Stephan Riek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Watson

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Guy Wallis

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Hill

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge