Stephan Schumm
Swedish Institute for Food and Biotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephan Schumm.
Journal of the Science of Food and Agriculture | 2011
Patricia Lopez-Sanchez; Jaap Nijsse; Han C G Blonk; Lucy Bialek; Stephan Schumm; Maud Langton
BACKGROUND The food industry has shown an increased interest in the manufacture of healthier and more natural food products. By tailored processing fruit and vegetables can be used as structurants thus reducing artificial gums and stabilisers. The effect of different thermal and mechanical treatments, including high-pressure homogenisation, on the microstructural and rheological properties of carrot, broccoli and tomato dispersions was studied. As part of the rheological characterisation small oscillatory deformation as well as shear flow measurements were performed. RESULTS Carrot and broccoli showed a different behaviour from tomato under the conditions studied. Changing the order of thermal and mechanical treatment led to microstructures with different flow properties. The resulting microstructures differed in the manner of cell wall separation: either breaking across the cell walls or through the middle lamella. High-pressure homogenisation decreased the viscosity of carrot and broccoli dispersions, while it increased the viscosity of tomato. Cryo-scanning electron microscopy showed that the cell walls of carrot and broccoli remained as compact structures after homogenisation whereas tomato cell walls were considerably swollen. CONCLUSIONS Based on the type of vegetable, the different processes applied led to microstructures with different rheological properties. This study shows that particle size distribution, morphology and phase volume are important parameters to explain the complex relationship between rheology and microstructure for these types of systems.
Journal of Food Science | 2011
Cecilia Svelander; Patricia Lopez-Sanchez; Paul D.A. Pudney; Stephan Schumm; Marie A.G. Alminger
UNLABELLED The correlation between food microstructure and in vitro bioaccessibility of carotenes was evaluated for tomato and carrot emulsions (5% olive oil) subjected to high pressure homogenization (HPH) at varying degrees of intensity. The aim was to investigate whether additional mechanical disruption of the food matrix could be utilized to further increase the carotene bioaccessibility of an already pre-processed material. The carotene bioaccessibility of the samples was measured after simulated in vitro digestion, carotene release to the oil phase was estimated by Confocal Raman spectroscopy and, to measure active uptake of carotenes, Caco-2 cells were incubated with the digesta of selected samples. HPH did not notably affect the retention of carotenes or ascorbic acid but significantly increased both the release and micellar incorporation of α- and β-carotene in carrot emulsions 1.5- to 1.6-fold. On the other hand, in vitro bioaccessibility of lycopene from tomato was not increased by HPH under any of the conditions investigated. Instead, the results suggested that lycopene bioaccessibility was limited by a combination of the low solubility of lycopene in dietary lipids and entrapment in the cellular network. Carotene uptake by Caco-2 cells appeared to be mainly dependent upon the carotene concentration of the digesta, but cis-trans isomerization had a significant impact on the micellarization efficiency of carotenes. We therefore conclude that HPH is an interesting option for increasing the bioaccessibility of carotenes from fruits and vegetables while maintaining a high nutrient content, but that the results will depend on both food source and type of carotene. PRACTICAL APPLICATION A better understanding of the correlation between the processing of fruits and vegetables, microstructure and nutrient bioaccessibility can be directly applied in the production of food products with an increased nutritional value.
Food Chemistry | 2015
Patricia Lopez-Sanchez; R. C. H. de Vos; Harry Jonker; Roland Mumm; Robert D. Hall; Lucy Bialek; R. Leenman; Katrin Strassburg; R. Vreeken; Thomas Hankemeier; Stephan Schumm; J.P.M. van Duynhoven
The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC-PDA for vitamins, (1)H NMR for polar metabolites, accurate mass LC-QTOF MS for semi-polar metabolites, LC-MRM for oxylipins, and headspace GC-MS for volatile compounds. An initial exploratory experiment indicated that the order of blending and thermal treatments had the highest impact on the phytochemicals in the purees. This blending-heating order effect was investigated in more depth by performing alternate blending-heating sequences in triplicate on the same batches of broccoli, tomato and carrot. For each vegetable and particularly in broccoli, a large proportion of the metabolites detected in the purees was significantly influenced by the blending-heating order, amongst which were potential health-related phytochemicals and flavour compounds like vitamins C and E, carotenoids, flavonoids, glucosinolates and oxylipins. Our metabolomics data indicates that during processing the activity of a series of endogenous plant enzymes, such as lipoxygenases, peroxidases and glycosidases, including myrosinase in broccoli, is key to the final metabolite composition and related quality of the purees.
Food Biophysics | 2012
Patricia Lopez-Sanchez; Vishmai Chapara; Stephan Schumm; Robert Farr
The relationship between small amplitude oscillatory rheological properties and microstructure of plant cell suspensions was studied. Carrot, broccoli and tomato were selected as model plant systems to generate particles with different microstructures: clusters of cells with smooth or rough edges and single cells. By analysing the compressive stress undergone by the plant cells under centrifugation, and comparing this to oscillatory rheometry, agreement was found between the compressive stress required to compress the dispersions to higher insoluble solids dry mass fractions, and the elastic shear modulus of the plant dispersions. This indicated that centrifugation is acting as a crude rheological measurement on the samples, rather than measuring any well-defined “particle phase volume”. We estimated the theoretical critical dry mass fraction above which smooth, roughly spherical, elastically interacting particles would acquire a non-zero G′, and compared this with the experimental values. Our results give evidence that for the three vegetable suspensions considered here, the elastic rheology observed is not coming simply from the packing of smooth particles, but is dominated in the dilute limit by attractive forces or interaction of asperities, and in the concentrated limit by deformation and buckling acting together. Improved understanding of the particles and their packing would help in the structuring of food products without adding other texturising or stabilising agents.
Journal of Food Science | 2011
Patricia Lopez-Sanchez; Cecilia Svelander; Lucy Bialek; Stephan Schumm; Maud Langton
Food Hydrocolloids | 2005
Chrystel Loret; Stephan Schumm; Paul D.A. Pudney; William J. Frith; P.J. Fryer
Analyst | 2011
Patricia Lopez-Sanchez; Stephan Schumm; Paul D.A. Pudney; Johan Hazekamp
Archive | 2016
Vishmai Chapara; Stephan Schumm; Paes Sabrina Silva
Archive | 2016
Stephan Schumm; Paes Sabrina Silva; Vishmai Chapara
Archive | 2016
Stephan Schumm; Paes Sabrina Silva; Vishmai Chapara