Stephan Stern
Leidos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephan Stern.
Nature | 2011
Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Nature | 2011
M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Optics Express | 2012
Andrew Aquila; Mark S. Hunter; R. Bruce Doak; Richard A. Kirian; Petra Fromme; Thomas A. White; Jakob Andreasson; David Arnlund; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Michael J. Bogan; Christoph Bostedt; Hervé Bottin; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; Daniel P. DePonte; Veit Elser; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Raimund Fromme; Heinz Graafsma; Ingo Grotjohann; Lars Gumprecht; Janos Hajdu
We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
Nature Methods | 2012
Rudolf Koopmann; Karolina Cupelli; Karol Nass; Daniel P. DePonte; Thomas A. White; Francesco Stellato; Dirk Rehders; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; Sébastien Boutet; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; R. Bruce Doak; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton
Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
Nature Methods | 2012
Linda C. Johansson; David Arnlund; Thomas A. White; Gergely Katona; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Robert L. Shoeman; Lukas Lomb; Erik Malmerberg; Jan Davidsson; Karol Nass; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma
X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
Physical Review Letters | 2014
Jochen Küpper; Stephan Stern; Lotte Holmegaard; Frank Filsinger; Arnaud Rouzée; Artem Rudenko; Per Johnsson; Andrew V. Martin; Marcus Adolph; Andrew Aquila; Sasa Bajt; Anton Barty; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Peter Holl; André Hömke; Nils Kimmel; Faton Krasniqi
We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
Drug Metabolism and Disposition | 2008
Banu S. Zolnik; Stephan Stern; James M. Kaiser; Yasser Heakal; Jeffrey D. Clogston; Mark Kester; Scott E. McNeil
Ceramide, an endogenous sphingolipid, has demonstrated antieoplastic activity in vitro and in vivo. However, the chemotherapeutic utility of ceramide is limited because of its insolubility. To increase the solubility of ceramide, liposomal delivery systems have been used. The objective of the present study was to characterize the pharmacokinetics and tissue distribution of C6-ceramide and control (non-C6-ceramide) nanoliposomes in rats, using [14C]C6-ceramide and [3H]distearylphosphatidylcholine (DSPC) as tracers of the ceramide and liposome components, respectively. Ceramide liposomes were administered at 50 mg of liposomes/kg by jugular vein to female Sprague-Dawley rats. The apparent volume of distribution (Vd) of [3H]DSPC was approximately 50 ml/kg, suggesting that the liposomes were confined to the systemic circulation. In contrast, the Vd of [14C]C6-ceramide was 20-fold greater than that of liposomes, indicating extensive tissue distribution. This high Vd of [14C]C6-ceramide in relation to that of [3H]DSPC suggests that ceramide and liposomes distribute independently of each other. This disparate disposition was confirmed by tissue distribution studies, in which [14C]C6-ceramide exhibited rapid tissue accumulation compared with to [3H]DSPC. Examination of ceramide liposome blood compartmentalization in vitro also demonstrated divergent partitioning, with liposomes being confined to the plasma fraction and ceramide rapidly equilibrating between red blood cell and plasma fractions. A bilayer exchange mechanism for ceramide transfer is proposed to explain the results of the present study, as well as give insight into the documented antineoplastic efficacy of short-chain ceramide liposomes. Our studies suggest that this nanoscale PEGylated drug delivery system for short-chain ceramide offers rapid tissue distribution without adverse effects for a neoplastic-selective, insoluble agent.
Nature Communications | 2012
D. Starodub; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; A. Barty; Christoph Bostedt; John D. Bozek; Nicola Coppola; R. B. Doak; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Lars Gumprecht; Christina Y. Hampton; Andreas Hartmann; Robert Hartmann; Peter Holl; Stephan Kassemeyer; Nils Kimmel; H. Laksmono; Mengning Liang; N.D. Loh; Lukas Lomb; Andrew V. Martin; K. Nass; Christian Reich; Daniel Rolles; Benedikt Rudek; A. Rudenko; Joachim Schulz
Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution.
Optics Express | 2012
Stephan Kassemeyer; Jan Steinbrener; Lukas Lomb; Elisabeth Hartmann; Andrew Aquila; Anton Barty; Andrew V. Martin; Christina Y. Hampton; Sasa Bajt; Miriam Barthelmess; Thomas R. M. Barends; Christoph Bostedt; Mario Bott; John D. Bozek; Nicola Coppola; Max J. Cryle; Daniel P. DePonte; R. Bruce Doak; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Helmut Hirsemann; André Hömke; Peter Holl
We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
Autophagy | 2008
Stephan Stern; Denise N. Johnson
Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Coupled with increasing research into potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated elevated levels of autophagic vacuoles upon exposure of cells to certain nanomaterials, including carbon- and metal-based nanoparticles. While this apparent increase in autophagic activity may be an appropriate cellular response toward nanomaterial clearance, often the interaction between nanomaterials and the autophagy pathway is disruptive, resulting in severe morphological changes and coincident cell death. Interestingly, epidemiological studies have identified an association between exposure to combustion-derived ambient particles (which are predominantly nanoscale) and neurological conditions with Alzheimer’s and Parkinson’s disease-like pathologies. As impaired autophagy may play an important role in the pathogenesis of these and other diseases, it is intriguing to speculate about the plausible involvement of nanoscale particulates in this process. The interaction of nanomaterials with the autophagy pathway, and the potential negative consequences of resulting autophagy dysfunction, should be explored further. Addendum to: Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicol Sci 2008; In press; DOI: 10.1093/toxsci/kfn137.