Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Theiss is active.

Publication


Featured researches published by Stephan Theiss.


BMC Neuroscience | 2009

Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

Sebastian Illes; Stephan Theiss; Hans-Peter Hartung; Mario Siebler; Marcel Dihné

BackgroundThe present work was performed to investigate the ability of two different embryonic stem (ES) cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs), progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far.ResultsWhile both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2), only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2-4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated vGlut2 expression within presynaptic vesicles. Also those NPCs that had migrated away from adherent neural aggregates maintained their ability to generate a synchronously oscillating neuronal network, even if they were separated from adherent aggregates, dissociated and re-plated.ConclusionThese findings suggest that the complex environment within niches and aggregates of heterogeneous neural cell populations support the generation of fully mature neurons and functional neuronal networks from ES cell-derived neural cells. In contrast, homogeneous ES cell-derived NPCs within monolayer cultures exhibited an impaired functional neuronal maturation.


Experimental Neurology | 2011

Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy.

Julius A. Steinbeck; Nadine Henke; Jessica Opatz; Joanna Gruszczynska-Biegala; Lars Schneider; Stephan Theiss; Nadine Hamacher; Barbara Steinfarz; Stefan Golz; Oliver Brüstle; Jacek Kuznicki; Axel Methner

Store-operated Ca(2+) entry (SOCE) over the plasma membrane is activated by depletion of intracellular Ca(2+) stores and has only recently been shown to play a role in CNS processes like synaptic plasticity. However, the direct effect of SOCE on the excitability of neuronal networks in vitro and in vivo has never been determined. We confirmed the presence of SOCE and the expression of the calcium sensors STIM1 and STIM2, which convey information about the calcium load of the stores to channel proteins at the plasma membrane, in neurons and astrocytes. Inhibition of SOCE by pharmacological agents 2-APB and ML-9 reduced the steady-state neuronal Ca(2+) concentration, reduced network activity, and increased synchrony of primary neuronal cultures grown on multi-electrode arrays, which prompted us to elucidate the relative expression of STIM proteins in conditions of pathologic excitability. Both proteins were increased in brains of chronic epileptic rodents and strongly expressed in hippocampal specimens from medial temporal lobe epilepsy patients. Pharmacologic inhibition of SOCE in chronic epileptic hippocampal slices suppressed interictal spikes and rhythmized epileptic burst activity. Our results indicate that SOCE modulates the activity of neuronal networks in vitro and in vivo and delineates SOCE as a potential drug target.


The Journal of Neuroscience | 2014

Impaired Action Potential Initiation in GABAergic Interneurons Causes Hyperexcitable Networks in an Epileptic Mouse Model Carrying a Human Na(V)1.1 Mutation

Ulrike B. S. Hedrich; Camille Liautard; Daniel Kirschenbaum; Martin Pofahl; Jennifer Lavigne; Yuanyuan Liu; Stephan Theiss; Johannes Slotta; Andrew Escayg; Marcel Dihné; Heinz Beck; Massimo Mantegazza; Holger Lerche

Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na+ channels in interneurons and persistent Na+ currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca2+ imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation.


Journal of Cancer Research and Clinical Oncology | 2010

Comparative in silico analyses and experimental validation of novel splice site and missense mutations in the genes MLH1 and MSH2

Beate Betz; Stephan Theiss; Murat Aktas; Carolin Konermann; Timm O. Goecke; Gabriela Möslein; Heiner Schaal; Brigitte Royer-Pokora

Hereditary non-polyposis colorectal cancer, an autosomal dominant predisposition to colorectal cancer and other malignancies, is caused by inactivating mutations of DNA mismatch repair genes, mainly MLH1 and MSH2. Missense mutations affect protein structure or function, but may also cause aberrant splicing, if located within splice sites (ss) or cis-acting sequences of splicing regulatory proteins, i.e., exonic splicing enhancers or exonic splicing silencers. Despite significant progress of ss scoring algorithms, the prediction for the impact of mutations on splicing is still unsatisfactory. For this study, we assessed ten ss and nine missense mutations outside ss in MLH1 and MSH2, including eleven newly identified mutations, and experimentally analyzed their effect at the RNA level. We additionally tested and compared the reliability of several web-based programs for the prediction of splicing outcome for these mutations.


Nucleic Acids Research | 2014

Genomic HEXploring allows landscaping of novel potential splicing regulatory elements

Steffen Erkelenz; Stephan Theiss; Marianne Otte; Marek Widera; Jan Otto Peter; Heiner Schaal

Effective splice site selection is critically controlled by flanking splicing regulatory elements (SREs) that can enhance or repress splice site use. Although several computational algorithms currently identify a multitude of potential SRE motifs, their predictive power with respect to mutation effects is limited. Following a RESCUE-type approach, we defined a hexamer-based ‘HEXplorer score’ as average Z-score of all six hexamers overlapping with a given nucleotide in an arbitrary genomic sequence. Plotted along genomic regions, HEXplorer score profiles varied slowly in the vicinity of splice sites. They reflected the respective splice enhancing and silencing properties of splice site neighborhoods beyond the identification of single dedicated SRE motifs. In particular, HEXplorer score differences between mutant and reference sequences faithfully represented exonic mutation effects on splice site usage. Using the HIV-1 pre-mRNA as a model system highly dependent on SREs, we found an excellent correlation in 29 mutations between splicing activity and HEXplorer score. We successfully predicted and confirmed five novel SREs and optimized mutations inactivating a known silencer. The HEXplorer score allowed landscaping of splicing regulatory regions, provided a quantitative measure of mutation effects on splice enhancing and silencing properties and permitted calculation of the mutationally most effective nucleotide.


Journal of Virology | 2013

Tra2-Mediated Recognition of HIV-1 5′ Splice Site D3 as a Key Factor in the Processing of vpr mRNA

Steffen Erkelenz; Gereon Poschmann; Stephan Theiss; Anja Stefanski; Frank Hillebrand; Marianne Otte; Kai Stühler; Heiner Schaal

ABSTRACT Small noncoding HIV-1 leader exon 3 is defined by its splice sites A2 and D3. While 3′ splice site (3′ss) A2 needs to be activated for vpr mRNA formation, the location of the vpr start codon within downstream intron 3 requires silencing of splicing at 5′ss D3. Here we show that the inclusion of both HIV-1 exon 3 and vpr mRNA processing is promoted by an exonic splicing enhancer (ESE vpr ) localized between exonic splicing silencer ESSV and 5′ss D3. The ESE vpr sequence was found to be bound by members of the Transformer 2 (Tra2) protein family. Coexpression of these proteins in provirus-transfected cells led to an increase in the levels of exon 3 inclusion, confirming that they act through ESE vpr . Further analyses revealed that ESE vpr supports the binding of U1 snRNA at 5′ss D3, allowing bridging interactions across the upstream exon with 3′ss A2. In line with this, an increase or decrease in the complementarity of 5′ss D3 to the 5′ end of U1 snRNA was accompanied by a higher or lower vpr expression level. Activation of 3′ss A2 through the proposed bridging interactions, however, was not dependent on the splicing competence of 5′ss D3 because rendering it splicing defective but still competent for efficient U1 snRNA binding maintained the enhancing function of D3. Therefore, we propose that splicing at 3′ss A2 occurs temporally between the binding of U1 snRNA and splicing at D3.


Retrovirology | 2015

Balanced splicing at the Tat-specific HIV-1 3'ss A3 is critical for HIV-1 replication

Steffen Erkelenz; Frank Hillebrand; Marek Widera; Stephan Theiss; Anaam Fayyaz; Daniel Degrandi; Klaus Pfeffer; Heiner Schaal

BackgroundThe viral regulatory protein Tat is essential for establishing a productive transcription from the 5′-LTR promoter during the early phase of viral gene expression. Formation of the Tat-encoding mRNAs requires splicing at the viral 3′ss A3, which has previously been shown to be both negatively and positively regulated by the downstream splicing regulatory elements (SREs) ESS2p and ESE2/ESS2. However, using the novel RESCUE-type computational HEXplorer algorithm, we were recently able to identify another splicing enhancer (ESE5807-5838, henceforth referred to as ESEtat) located between ESS2p and ESE2/ESS2. Here we show that ESEtat has a great impact on viral tat-mRNA splicing and that it is fundamental for regulated 3′ss A3 usage.ResultsMutational inactivation or locked nucleic acid (LNA)-directed masking of the ESEtat sequence in the context of a replication-competent virus was associated with a failure (i) to activate viral 3′ss A3 and (ii) to accumulate Tat-encoding mRNA species. Consequently, due to insufficient amounts of Tat protein efficient viral replication was drastically impaired. RNA in vitro binding assays revealed SRSF2 and SRSF6 as candidate splicing factors acting through ESEtat and ESE2 for 3′ss A3 activation. This notion was supported by coexpression experiments, in which wild-type, but not ESEtat-negative provirus responded to higher levels of SRSF2 and SRSF6 proteins with higher levels of tat-mRNA splicing. Remarkably, we could also find that SRSF6 overexpression established an antiviral state within provirus-transfected cells, efficiently blocking virus particle production. For the anti-HIV-1 activity the arginine-serine (RS)-rich domain of the splicing factor was dispensable.ConclusionsBased on our results, we propose that splicing at 3′ss A3 is dependent on binding of the enhancing SR proteins SRSF2 and SRSF6 to the ESEtat and ESE2 sequence. Mutational inactivation or interference specifically with ESEtat activity by LNA-directed masking seem to account for an early stage defect in viral gene expression, probably by cutting off the supply line of Tat that HIV needs to efficiently transcribe its genome.


Annals of Neurology | 2009

Cerebrospinal fluid of brain trauma patients inhibits in vitro neuronal network function via NMDA receptors

Frauke Otto; Sebastian Illes; Jessica Opatz; Maurice Laryea; Stephan Theiss; Hans-Peter Hartung; Alfons Schnitzler; Mario Siebler; Marcel Dihné

Neurological diseases frequently induce pathological changes of cerebrospinal fluid (CSF) that might secondarily influence brain activity, as the CSF–brain barrier is partially permeable. However, functional effects of CSF on neuronal network activity have not been specified to date. Here, we report that CSF specimens from patients with reduced Glasgow Coma Scale values caused by severe traumatic brain injury suppress synchronous activity of in vitro‐generated neuronal networks in comparison with controls. We present evidence that underlying mechanisms include increased N‐methyl‐D‐aspartate receptor activity mediated by a CSF fraction containing elevated amino acid concentrations. These proof‐of‐principle data suggest that determining effects of CSF specimens on neuronal network activity might be of diagnostic value. Ann Neurol 2009;66:546–555


Journal of Neuroscience Methods | 2012

Development of dissociated cryopreserved rat cortical neurons in vitro

Sarah C. Schock; Kheira Jolin-Dahel; Paul C. Schock; Stephan Theiss; Gordon W. Arbuthnott; Marianela Garcia-Munoz; William A. Staines

Dissociated neuronal cultures of various brain regions are commonly used to study physiological and pathophysiological processes in vitro. The data derived from these studies are often viewed to have relevance to processes taking place in the mature brain. However, due to the practical challenges associated with lengthy neuronal culture, neurons are often kept for 14 days in vitro (DIV), or less, before being subject to experimentation. Non-proliferative cultures such as primary neuronal cultures can be maintained for more than 42 DIV if water evaporation from culture media is monitored and corrected. To determine appropriate time points corresponding to the stages of cortical development, we compared characteristics of cryopreserved cortical neurons in cultures at various DIV using immunofluorescence, biochemical measurements and multielectrode array recordings. Compared to 21 and 35 DIV, at 14 DIV, cultures are still undergoing developmental changes and are not representative of adult in vivo brain tissue. Specifically, we noted significant lack in immunoreactivity for synaptic markers such as synapsin, vesicular GABA transporter and vesicular glutamate transporter at 14 DIV, relative to 21 and 35 DIV. Moreover, multielectrode array analysis indicated an increase in network firing up to 46 DIV with patterned firing peaking at 35 DIV. Our results provide specific evidence of the maturational stages of neurons in culture that can be used to more successfully plan various types of in vitro experimentation.


International Journal of Neural Systems | 2015

Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks

Luis Carrillo-Reid; Violeta G. López-Huerta; Marianela Garcia-Munoz; Stephan Theiss; Gordon W. Arbuthnott

The cell assembly (CA) hypothesis has been used as a conceptual framework to explain how groups of neurons form memories. CAs are defined as neuronal pools with synchronous, recurrent and sequential activity patterns. However, neuronal interactions and synaptic properties that define CAs signatures have been difficult to examine because identities and locations of assembly members are usually unknown. In order to study synaptic properties that define CAs, we used optical and electrophysiological approaches to record activity of identified neurons in mouse cortical cultures. Population analysis and graph theory techniques allowed us to find sequential patterns that represent repetitive transitions between network states. Whole cell pair recordings of neurons participating in repeated sequences demonstrated that synchrony is exhibited by groups of neurons with strong synaptic connectivity (concomitant firing) showing short-term synaptic depression (STD), whereas alternation (sequential firing) is seen in groups of neurons with weaker synaptic connections showing short-term synaptic facilitation (STF). Decreasing synaptic weights of a network promoted the generation of sequential activity patterns, whereas increasing synaptic weights restricted state transitions. Thus in simple cortical networks of real neurons, basic signatures of CAs, the properties that underlie perception and memory in Hebbs original description, are already present.

Collaboration


Dive into the Stephan Theiss's collaboration.

Top Co-Authors

Avatar

Heiner Schaal

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Mario Siebler

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Marcel Dihné

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marek Widera

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara Walotka

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Lisa Müller

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge