Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Weidinger is active.

Publication


Featured researches published by Stephan Weidinger.


Allergy | 2006

Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report

Cezmi A. Akdis; Mübeccel Akdis; T. Bieber; Carsten Bindslev-Jensen; Mark Boguniewicz; Philippe Eigenmann; Qutayba Hamid; A Kapp; D Y M Leung; J. Lipozenčić; Thomas A. Luger; Antonella Muraro; Natalija Novak; Thomas A.E. Platts-Mills; Lanny J. Rosenwasser; Annika Scheynius; F.E.R. Simons; Jonathan M. Spergel; K Turjanmaa; Ulrich Wahn; Stephan Weidinger; Thomas Werfel; Torsten Zuberbier

There are remarkable differences in the diagnostic and therapeutic management of atopic dermatitis practiced by dermatologists and pediatricians in different countries. Therefore, the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology nominated expert teams who were given the task of finding a consensus to serve as a guideline for clinical practice in Europe as well as in North America. The consensus report is part of the PRACTALL initiative, which is endorsed by both academies.


PLOS ONE | 2013

Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation

Sonja Zeilinger; Brigitte Kühnel; Norman Klopp; Hansjörg Baurecht; Anja Kleinschmidt; Christian Gieger; Stephan Weidinger; Eva Lattka; Jerzy Adamski; Annette Peters; Konstantin Strauch; Melanie Waldenberger; Thomas Illig

Environmental factors such as tobacco smoking may have long-lasting effects on DNA methylation patterns, which might lead to changes in gene expression and in a broader context to the development or progression of various diseases. We conducted an epigenome-wide association study (EWAs) comparing current, former and never smokers from 1793 participants of the population-based KORA F4 panel, with replication in 479 participants from the KORA F3 panel, carried out by the 450K BeadChip with genomic DNA obtained from whole blood. We observed wide-spread differences in the degree of site-specific methylation (with p-values ranging from 9.31E-08 to 2.54E-182) as a function of tobacco smoking in each of the 22 autosomes, with the percent of variance explained by smoking ranging from 1.31 to 41.02. Depending on cessation time and pack-years, methylation levels in former smokers were found to be close to the ones seen in never smokers. In addition, methylation-specific protein binding patterns were observed for cg05575921 within AHRR, which had the highest level of detectable changes in DNA methylation associated with tobacco smoking (–24.40% methylation; p = 2.54E-182), suggesting a regulatory role for gene expression. The results of our study confirm the broad effect of tobacco smoking on the human organism, but also show that quitting tobacco smoking presumably allows regaining the DNA methylation state of never smokers.


The Journal of Allergy and Clinical Immunology | 2011

Tight junction defects in patients with atopic dermatitis.

Anna De Benedetto; Nicholas Rafaels; Laura Y. McGirt; Andrei I. Ivanov; Steve N. Georas; Chris Cheadle; Alan E. Berger; Kunzhong Zhang; Sadasivan Vidyasagar; Takeshi Yoshida; Mark Boguniewicz; Tissa Hata; Lynda C. Schneider; Jon M. Hanifin; Richard L. Gallo; Natalija Novak; Stephan Weidinger; Terri H. Beaty; Donald Y.M. Leung; Kathleen C. Barnes; Lisa A. Beck

BACKGROUND Atopic dermatitis (AD) is characterized by dry skin and a hyperactive immune response to allergens, 2 cardinal features that are caused in part by epidermal barrier defects. Tight junctions (TJs) reside immediately below the stratum corneum and regulate the selective permeability of the paracellular pathway. OBJECTIVE We evaluated the expression/function of the TJ protein claudin-1 in epithelium from AD and nonatopic subjects and screened 2 American populations for single nucleotide polymorphisms in the claudin-1 gene (CLDN1). METHODS Expression profiles of nonlesional epithelium from patients with extrinsic AD, nonatopic subjects, and patients with psoriasis were generated using Illuminas BeadChips. Dysregulated intercellular proteins were validated by means of tissue staining and quantitative PCR. Bioelectric properties of epithelium were measured in Ussing chambers. Functional relevance of claudin-1 was assessed by using a knockdown approach in primary human keratinocytes. Twenty-seven haplotype-tagging SNPs in CLDN1 were screened in 2 independent populations with AD. RESULTS We observed strikingly reduced expression of the TJ proteins claudin-1 and claudin-23 only in patients with AD, which were validated at the mRNA and protein levels. Claudin-1 expression inversely correlated with T(H)2 biomarkers. We observed a remarkable impairment of the bioelectric barrier function in AD epidermis. In vitro we confirmed that silencing claudin-1 expression in human keratinocytes diminishes TJ function while enhancing keratinocyte proliferation. Finally, CLDN1 haplotype-tagging SNPs revealed associations with AD in 2 North American populations. CONCLUSION Collectively, these data suggest that an impairment in tight junctions contributes to the barrier dysfunction and immune dysregulation observed in AD subjects and that this may be mediated in part by reductions in claudin-1.


The Journal of Allergy and Clinical Immunology | 2008

Filaggrin mutations, atopic eczema, hay fever, and asthma in children

Stephan Weidinger; Maureen J. O'Sullivan; Thomas Illig; Hansjörg Baurecht; Martin Depner; Elke Rodriguez; Andreas Ruether; Norman Klopp; Christian Vogelberg; Stephan K. Weiland; W.H. Irwin McLean; Erika von Mutius; Alan D. Irvine; Michael Kabesch

BACKGROUND Mutations in the filaggrin gene (FLG) have been shown to play a significant role in ichthyosis vulgaris and eczema, 2 common chronic skin diseases. However, their role in the development of other atopic diseases such as asthma and rhinitis has not yet been clarified in large population-based studies. OBJECTIVES To study the effect of FLG mutations at the population level and their effect on other atopic phenotypes. METHODS Association analysis of the 2 common FLG-null mutations R501X and 2282del4 and 3 recently identified rare FLG variants (R2447X, S3247X, 3702delG) was performed on our cross-sectional population of German children (n = 3099) recruited as part of the International Study of Asthma and Allergies in Childhood II in Munich (n = 1159) and Dresden (n = 1940). RESULTS FLG variants increased the risk for eczema more than 3-fold (odds ratio [OR], 3.12; 95% CI, 2.33-4.173; P = 2.5 x 10(-14); population-attributable risk, 13.5%). Independent of eczema, FLG mutations conferred a substantial risk for allergic rhinitis (OR, 2.64; 95% CI, 1.76-4.00; P = 2.5 x 10(-6); population-attributable risk, 10.8%). Nasal biopsies demonstrated strong filaggrin expression in the cornified epithelium of the nasal vestibular lining, but not the transitional and respiratory nasal epithelia. In contrast, the association with asthma (OR, 1.79; 95% CI, 1.19-2.68; P = .0048) was restricted to asthma occurring in the context of eczema, and there was a strong association with the complex phenotype eczema plus asthma (OR, 3.49; 95% CI, 2.00-6.08; P = 1.0 x 10(-5)). CONCLUSION Our results suggest that FLG mutations are key organ specific factors predominantly affecting the development of eczema and confer significant risks of allergic sensitization and allergic rhinitis as well as asthma in the context of eczema.


The Journal of Allergy and Clinical Immunology | 2009

Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease

Elke Rodriguez; Hansjörg Baurecht; Esther Herberich; Stefan Wagenpfeil; Sara J. Brown; Heather J. Cordell; Alan D. Irvine; Stephan Weidinger

BACKGROUND The discovery of filaggrin (FLG) null mutations as a major risk factor for eczema represents a milestone toward the understanding of an important mechanism in this complex disease. However, published studies demonstrate differences concerning design and effect size, and conflicting results for asthma have been reported. OBJECTIVES We sought to provide a more accurate estimate of FLG effect sizes and to better refine FLG risk profiles within the broad and inclusive eczema diagnosis. We also sought to provide a more detailed and conclusive estimate of the risk for asthma associated with FLG null alleles. METHODS We performed a meta-analysis of 24 studies on FLG mutations and eczema involving 5,791 cases, 26,454 control subjects, and 1,951 families as well as 17 studies on asthma involving 3,138 cases, 17,164 control subjects, and 1,511 offspring. RESULTS Both case-control and family studies showed strong associations with eczema. Case-control studies were heterogeneous, whereas family studies yielded more homogeneous results. Combined analysis showed that FLG haploinsufficiency strongly increases the eczema risk (odds ratio [OR], 3.12; 95% CI, 2.57-3.79) and is associated with more severe and dermatologist-diagnosed disease. FLG mutations are also significantly associated with asthma (OR, 1.48; 95% CI, 1.32-1.66). However, although strong effects for the compound phenotype asthma plus eczema (OR, 3.29; 95% CI, 2.84-3.82) were observed, there appears to be no association with asthma in the absence of eczema. CONCLUSIONS This meta-analysis summarizes the strong evidence for a high eczema risk conferred by FLG mutations and refines their risk profiles, suggesting an association with more severe and secondary care disease. FLG mutations are also a robust risk factor for asthma and might help define the asthma endophenotype linked with eczema.


Nature Genetics | 2010

Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2.

Eva Ellinghaus; David Ellinghaus; Philip E. Stuart; Rajan P. Nair; Sophie Debrus; John V. Raelson; Majid Belouchi; Helene Fournier; Claudia Reinhard; Jun Ding; Yun Li; Trilokraj Tejasvi; Johann E. Gudjonsson; Stefan W. Stoll; John J. Voorhees; Sylviane Lambert; Stephan Weidinger; Bernadette Eberlein; Manfred Kunz; Proton Rahman; Dafna D. Gladman; Christian Gieger; H.-Erich Wichmann; Tom H. Karlsen; Gabriele Mayr; Mario Albrecht; Dieter Kabelitz; Ulrich Mrowietz; Gonçalo R. Abecasis; James T. Elder

Psoriasis is a multifactorial skin disease characterized by epidermal hyperproliferation and chronic inflammation, the most common form of which is psoriasis vulgaris (PsV). We present a genome-wide association analysis of 2,339,118 SNPs in 472 PsV cases and 1,146 controls from Germany, with follow-up of the 147 most significant SNPs in 2,746 PsV cases and 4,140 controls from three independent replication panels. We identified an association at TRAF3IP2 on 6q21 and genotyped two SNPs at this locus in two additional replication panels (the combined discovery and replication panels consisted of 6,487 cases and 8,037 controls; combined P = 2.36 × 10−10 for rs13210247 and combined P = 1.24 × 10−16 for rs33980500). About 15% of psoriasis cases develop psoriatic arthritis (PsA). A stratified analysis of our datasets including only PsA cases (1,922 cases compared to 8,037 controls, P = 4.57 × 10−12 for rs33980500) suggested that TRAF3IP2 represents a shared susceptibility for PsV and PsA. TRAF3IP2 encodes a protein involved in IL-17 signaling and which interacts with members of the Rel/NF-κB transcription factor family.


PLOS Genetics | 2008

Genome-Wide Scan on Total Serum IgE Levels Identifies FCER1A as Novel Susceptibility Locus

Stephan Weidinger; Christian Gieger; Elke Rodriguez; Hansjörg Baurecht; Martin Mempel; Norman Klopp; Henning Gohlke; Stefan Wagenpfeil; Markus Ollert; Johannes Ring; Heidrun Behrendt; Joachim Heinrich; Natalija Novak; Thomas Bieber; Ursula Krämer; Dietrich Berdel; Andrea von Berg; Carl Peter Bauer; Olf Herbarth; Sibylle Koletzko; Holger Prokisch; Divya Mehta; Thomas Meitinger; Martin Depner; Erika von Mutius; Liming Liang; Miriam F. Moffatt; William Cookson; Michael Kabesch; H.-Erich Wichmann

High levels of serum IgE are considered markers of parasite and helminth exposure. In addition, they are associated with allergic disorders, play a key role in anti-tumoral defence, and are crucial mediators of autoimmune diseases. Total IgE is a strongly heritable trait. In a genome-wide association study (GWAS), we tested 353,569 SNPs for association with serum IgE levels in 1,530 individuals from the population-based KORA S3/F3 study. Replication was performed in four independent population-based study samples (total n = 9,769 individuals). Functional variants in the gene encoding the alpha chain of the high affinity receptor for IgE (FCER1A) on chromosome 1q23 (rs2251746 and rs2427837) were strongly associated with total IgE levels in all cohorts with P values of 1.85×10−20 and 7.08×10−19 in a combined analysis, and in a post-hoc analysis showed additional associations with allergic sensitization (P = 7.78×10−4 and P = 1.95×10−3). The “top” SNP significantly influenced the cell surface expression of FCER1A on basophils, and genome-wide expression profiles indicated an interesting novel regulatory mechanism of FCER1A expression via GATA-2. Polymorphisms within the RAD50 gene on chromosome 5q31 were consistently associated with IgE levels (P values 6.28×10−7−4.46×10−8) and increased the risk for atopic eczema and asthma. Furthermore, STAT6 was confirmed as susceptibility locus modulating IgE levels. In this first GWAS on total IgE FCER1A was identified and replicated as new susceptibility locus at which common genetic variation influences serum IgE levels. In addition, variants within the RAD50 gene might represent additional factors within cytokine gene cluster on chromosome 5q31, emphasizing the need for further investigations in this intriguing region. Our data furthermore confirm association of STAT6 variation with serum IgE levels.


Nature Genetics | 2009

A common variant on chromosome 11q13 is associated with atopic dermatitis.

Stephan Weidinger; Regina Fölster-Holst; Anja Bauerfeind; Franz Rüschendorf; Giannino Patone; Klaus Rohde; Ingo Marenholz; Florian Schulz; Tamara Kerscher; Norbert Hubner; Ulrich Wahn; Stefan Schreiber; Andre Franke; Rainer Vogler; Simon Heath; Hansjörg Baurecht; Natalija Novak; Elke Rodriguez; Thomas Illig; Min-Ae Lee-Kirsch; Andrzej Ciechanowicz; Michael Kurek; T. Piskackova; Milan Macek; Young-Ae Lee; Andreas Ruether

We conducted a genome-wide association study in 939 individuals with atopic dermatitis and 975 controls as well as 270 complete nuclear families with two affected siblings. SNPs consistently associated with atopic dermatitis in both discovery sets were then investigated in two additional independent replication sets totalling 2,637 cases and 3,957 controls. Highly significant association was found with allele A of rs7927894 on chromosome 11q13.5, located 38 kb downstream of C11orf30 (Pcombined = 7.6 × 10−10). Approximately 13% of individuals of European origin are homozygous for rs7927894[A], and their risk of developing atopic dermatitis is 1.47 times that of noncarriers.


Nature Genetics | 2010

Genome-wide association analysis identifies three psoriasis susceptibility loci

Philip E. Stuart; Rajan P. Nair; Eva Ellinghaus; Jun Ding; Trilokraj Tejasvi; Johann E. Gudjonsson; Yun Li; Stephan Weidinger; Bernadette Eberlein; Christian Gieger; H.-Erich Wichmann; Manfred Kunz; Robert W. Ike; Gerald G. Krueger; Anne M. Bowcock; Ulrich Mrowietz; Henry W. Lim; John J. Voorhees; Gonçalo R. Abecasis; Michael Weichenthal; Andre Franke; Proton Rahman; Dafna D. Gladman; James T. Elder

We carried out a meta-analysis of two recent psoriasis genome-wide association studies with a combined discovery sample of 1,831 affected individuals (cases) and 2,546 controls. One hundred and two loci selected based on P value rankings were followed up in a three-stage replication study including 4,064 cases and 4,685 controls from Michigan, Toronto, Newfoundland and Germany. In the combined meta-analysis, we identified three new susceptibility loci, including one at NOS2 (rs4795067, combined P = 4 × 10−11), one at FBXL19 (rs10782001, combined P = 9 × 10−10) and one near PSMA6-NFKBIA (rs12586317, combined P = 2 × 10−8). All three loci were also associated with psoriatic arthritis (rs4795067, combined P = 1 × 10−5; rs10782001, combined P = 4 × 10−8; and rs12586317, combined P = 6 × 10−5) and purely cutaneous psoriasis (rs4795067, combined P = 1 × 10−8; rs10782001, combined P = 2 × 10−6; and rs12586317, combined P = 1 × 10−6). We also replicated a recently identified association signal near RNF114 (rs495337, combined P = 2 × 10−7).


Proceedings of the National Academy of Sciences of the United States of America | 2002

Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARγ: Possible relevance to human fibrotic disorders

Monica B. Frungieri; Stephan Weidinger; Viktor Meineke; Frank M. Köhn; Artur Mayerhofer

Mast-cell products can stimulate fibroblast proliferation, implying that these cells are key players in fibrosis. One mast-cell product, the serine protease tryptase, is known to activate protease-activated receptor 2 (PAR2) and cause proliferation of fibroblasts. We found that recombinant tryptase, human mast-cell (HMC-1) supernatant, which contains tryptase, and the PAR2-activating peptide SLIGKV exert fibroproliferative actions in human fibroblasts. Here we report insights into this action, which after activation of PAR2 leads to increased expression of cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins, and consequently to enhanced prostaglandin synthesis. Subsequent cell proliferation is mediated by the prostaglandin 15-deoxy-Δ12,14-prostaglandin J2, which acts via the nuclear peroxisome proliferator-activated receptor γ (PPARγ). Fibroblast proliferation induced by tryptase and PAR2 agonist peptide can be blocked by antagonists of COX2 and PPARγ, implying that the proliferative effect of tryptase is PAR2-initiated but depends on COX2, 15-deoxy-Δ12,14-prostaglandin J2, and PPARγ. This previously uncharacterized pathway could be of relevance for human fibrotic diseases. For instance, increased numbers of activated mast cells are correlated with fibrosis in testes of infertile men. In these cases all components of the signaling pathway of tryptase were detected as well as expression of COX2. Therefore, our study describes as-yet-unknown interactions between mast cells and fibroblasts, which could be relevant for human fibrotic diseases.

Collaboration


Dive into the Stephan Weidinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Illig

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Gieger

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Jochen Schmitt

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Kabesch

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Norman Klopp

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge