Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Wueest is active.

Publication


Featured researches published by Stephan Wueest.


Nature Medicine | 2011

Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells

Helga Ellingsgaard; Irina Hauselmann; Beat Schuler; Abdella M. Habib; Laurie L. Baggio; Daniel Meier; Elisabeth Eppler; Karim Bouzakri; Stephan Wueest; Yannick D. Muller; Ann Maria Kruse Hansen; Manfred Reinecke; Daniel Konrad; Max Gassmann; Frank Reimann; Philippe A. Halban; Jesper Gromada; Daniel J. Drucker; Fiona M. Gribble; Jan A. Ehses; Marc Y. Donath

Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.


Journal of Clinical Investigation | 2010

Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice.

Stephan Wueest; Reto A. Rapold; Desiree M. Schumann; Julia M. Rytka; Anita Schildknecht; Ori Nov; Alexander V. Chervonsky; Assaf Rudich; Eugen J. Schoenle; Marc Y. Donath; Daniel Konrad

Adipose tissue inflammation is linked to the pathogenesis of insulin resistance. In addition to exerting death-promoting effects, the death receptor Fas (also known as CD95) can activate inflammatory pathways in several cell lines and tissues, although little is known about the metabolic consequence of Fas activation in adipose tissue. We therefore sought to investigate the contribution of Fas in adipocytes to obesity-associated metabolic dysregulation. Fas expression was markedly increased in the adipocytes of common genetic and diet-induced mouse models of obesity and insulin resistance, as well as in the adipose tissue of obese and type 2 diabetic patients. Mice with Fas deficiency either in all cells or specifically in adipocytes (the latter are referred to herein as AFasKO mice) were protected from deterioration of glucose homeostasis induced by high-fat diet (HFD). Adipocytes in AFasKO mice were more insulin sensitive than those in wild-type mice, and mRNA levels of proinflammatory factors were reduced in white adipose tissue. Moreover, AFasKO mice were protected against hepatic steatosis and were more insulin sensitive, both at the whole-body level and in the liver. Thus, Fas in adipocytes contributes to adipose tissue inflammation, hepatic steatosis, and insulin resistance induced by obesity and may constitute a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.


Diabetes | 2011

The Portal Theory Supported by Venous Drainage–Selective Fat Transplantation

Julia M. Rytka; Stephan Wueest; Eugen J. Schoenle; Daniel Konrad

OBJECTIVE The “portal hypothesis” proposes that the liver is directly exposed to free fatty acids and cytokines increasingly released from visceral fat tissue into the portal vein of obese subjects, thus rendering visceral fat accumulation particularly hazardous for the development of hepatic insulin resistance and type 2 diabetes. In the present study, we used a fat transplantation paradigm to (artificially) increase intra-abdominal fat mass to test the hypothesis that venous drainage of fat tissue determines its impact on glucose homeostasis. RESEARCH DESIGN AND METHODS Epididymal fat pads of C57Bl6/J donor mice were transplanted into littermates, either to the parietal peritoneum (caval/systemic venous drainage) or, by using a novel approach, to the mesenterium, which confers portal venous drainage. RESULTS Only mice receiving the portal drained fat transplant developed impaired glucose tolerance and hepatic insulin resistance. mRNA expression of proinflammatory cytokines was increased in both portally and systemically transplanted fat pads. However, portal vein (but not systemic) plasma levels of interleukin (IL)-6 were elevated only in mice receiving a portal fat transplant. Intriguingly, mice receiving portal drained transplants from IL-6 knockout mice showed normal glucose tolerance. CONCLUSIONS These results demonstrate that the metabolic fate of intra-abdominal fat tissue transplantation is determined by the delivery of inflammatory cytokines to the liver specifically via the portal system, providing direct evidence in support of the portal hypothesis.


Endocrinology | 2010

Interleukin-1β May Mediate Insulin Resistance in Liver-Derived Cells in Response to Adipocyte Inflammation

Ori Nov; Ayelet Kohl; Eli C. Lewis; Nava Bashan; Irit Dvir; Shani Ben-Shlomo; Sigal Fishman; Stephan Wueest; Daniel Konrad; Assaf Rudich

Central obesity is frequently associated with adipose tissue inflammation and hepatic insulin resistance. To identify potential individual mediators in this process, we used in vitro systems and assessed if insulin resistance in liver cells could be induced by secreted products from adipocytes preexposed to an inflammatory stimulus. Conditioned medium from 3T3-L1 adipocytes pretreated without (CM) or with TNFalpha (CM-TNFalpha) was used to treat Fao hepatoma cells. ELISAs were used to assess the concentration of several inflammatory mediators in CM-TNFalpha. CM-TNFalpha-treated Fao cells exhibited about 45% diminution in insulin-stimulated phosphorylation of insulin receptor, insulin receptor substrate proteins, protein kinase B, and glycogen synthase kinase-3 as compared with CM-treated cells, without changes in the total abundance of these protein. Insulin increased glycogenesis by 2-fold in CM-treated Fao cells but not in cells exposed to CM-TNFalpha. Expression of IL-1beta mRNA was elevated 3-fold in TNFalpha-treated adipocytes, and CM-TNFalpha had 10-fold higher concentrations of IL-1beta but not TNFalpha or IL-1alpha. IL-1beta directly induced insulin resistance in Fao, HepG2, and in primary rat hepatocytes. Moreover, when TNFalpha-induced secretion/production of IL-1beta from adipocytes was inhibited by the IL-1 converting enzyme (ICE-1) inhibitor II (Ac-YVAD-CMK), insulin resistance was prevented. Furthermore, liver-derived cells treated with IL-1 receptor antagonist were protected against insulin resistance induced by CM-TNFalpha. Finally, IL-1beta secretion from human omental fat explants correlated with body mass index (R(2) = 0.639, P < 0.01), and the resulting CM induced insulin resistance in HepG2 cells, inhibitable by IL-1 receptor antagonist. Our results suggest that adipocyte-derived IL-1beta may constitute a mediator in the perturbed cross talk between adipocytes and liver cells in response to adipose tissue inflammation.


Nature Immunology | 2017

Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation

Erez Dror; Elise Dalmas; Daniel Meier; Stephan Wueest; Julien Thevenet; Constanze Thienel; Katharina Timper; Thierry M. Nordmann; Shuyang Traub; Friederike Schulze; Flurin Item; David Vallois; François Pattou; Julie Kerr-Conte; Vanessa Lavallard; Thierry Berney; Bernard Thorens; Daniel Konrad; Marianne Böni-Schnetzler; Marc Y. Donath

The deleterious effect of chronic activation of the IL-1β system on type 2 diabetes and other metabolic diseases is well documented. However, a possible physiological role for IL-1β in glucose metabolism has remained unexplored. Here we found that feeding induced a physiological increase in the number of peritoneal macrophages that secreted IL-1β, in a glucose-dependent manner. Subsequently, IL-1β contributed to the postprandial stimulation of insulin secretion. Accordingly, lack of endogenous IL-1β signaling in mice during refeeding and obesity diminished the concentration of insulin in plasma. IL-1β and insulin increased the uptake of glucose into macrophages, and insulin reinforced a pro-inflammatory pattern via the insulin receptor, glucose metabolism, production of reactive oxygen species, and secretion of IL-1β mediated by the NLRP3 inflammasome. Postprandial inflammation might be limited by normalization of glycemia, since it was prevented by inhibition of the sodium–glucose cotransporter SGLT2. Our findings identify a physiological role for IL-1β and insulin in the regulation of both metabolism and immunity.


American Journal of Physiology-endocrinology and Metabolism | 2013

Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance

Michael S.F. Wiedemann; Stephan Wueest; Flurin Item; Eugen J. Schoenle; Daniel Konrad

High-fat feeding for 3-4 days impairs glucose tolerance and hepatic insulin sensitivity. However, it remains unclear whether the evolving hepatic insulin resistance is due to acute lipid overload or the result of induced adipose tissue inflammation and consequent dysfunctional adipose tissue-liver cross-talk. In the present study, feeding C57Bl6/J mice a fat-enriched diet [high-fat diet (HFD)] for 4 days induced glucose intolerance, hepatic insulin resistance (as assessed by hyperinsulinemic euglycemic clamp studies), and hepatic steatosis as well as adipose tissue inflammation (i.e., TNFα expression) compared with standard chow-fed mice. Adipocyte-specific depletion of the antiapoptotic/anti-inflammatory factor Fas (CD95) attenuated adipose tissue inflammation and improved glucose tolerance as well as hepatic insulin sensitivity without altering the level of hepatic steatosis induced by HFD. In summary, our results identify adipose tissue inflammation and resulting dysfunctional adipose tissue-liver cross-talk as an early event in the development of HFD-induced hepatic insulin resistance.


American Journal of Physiology-endocrinology and Metabolism | 2012

Inverse regulation of basal lipolysis in perigonadal and mesenteric fat depots in mice

Stephan Wueest; Xingyuan Yang; Jun Liu; Eugen J. Schoenle; Daniel Konrad

Given the strong link between visceral adiposity and (hepatic) insulin resistance as well as liver steatosis, it is crucial to characterize obesity-associated alterations in adipocyte function, particularly in fat depots drained to the liver. Yet these adipose tissues are not easily accessible in humans, and the most frequently studied depot in rodents is the perigonadal, which is drained systemically. In the present study, we aimed to study alterations in lipolysis between mesenteric and perigonadal adipocytes in mice. Basal free fatty acid and glycerol release was significantly lower in perigonadal compared with mesenteric adipocytes isolated from chow-fed C57BL/6J mice. However, this difference completely vanished in high-fat diet-fed mice. Consistently, protein levels of the G(0)/G(1) switch gene 2 (G0S2), which were previously found to be inversely related to basal lipolysis, were significantly lower in mesenteric compared with perigonadal fat of chow-fed mice. Similarly, perilipin was differently expressed between the two depots. In addition, adipocyte-specific overexpression of G0S2 led to significantly decreased basal lipolysis in mesenteric adipose tissue of chow-fed mice. In conclusion, lipolysis is differently regulated between perigonadal and mesenteric adipocytes, and these depot-specific differences might be explained by altered regulation of G0S2 and/or perilipin.


Diabetes | 2015

Mesenteric Fat Lipolysis Mediates Obesity-associated Hepatic Steatosis and Insulin Resistance

Stephan Wueest; Flurin Item; Fabrizio C. Lucchini; Tenagne D. Challa; Werner Müller; Matthias Blüher; Daniel Konrad

Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and are tightly associated with obesity and type 2 diabetes. However, the underlying mechanisms linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. We provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin’s ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Of note, adipocyte-specific gp130 knockout mice were protected from high-fat diet–induced hepatic steatosis as well as from insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r = 0.31, P < 0.05) and negatively with hyperinsulinemic-euglycemic clamp glucose infusion rate (r = −0.28, P < 0.05). The results show that IL-6 cytokine-induced lipolysis may be restricted to mesenteric white adipose tissue and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunting detrimental fat-liver crosstalk in obesity.


Diabetes | 2013

Induction of Cytosolic Phospholipase A2α Is Required for Adipose Neutrophil Infiltration and Hepatic Insulin Resistance Early in the Course of High-Fat Feeding

Nurit Hadad; Olga Burgazliev; Vered Elgazar-Carmon; Yulia Solomonov; Stephan Wueest; Flurin Item; Daniel Konrad; Assaf Rudich; Rachel Levy

In established obesity, inflammation and macrophage recruitment likely contribute to the development of insulin resistance. In the current study, we set out to explore whether adipose tissue infiltration by neutrophils that occurs early (3 days) after initiating a high-fat diet (HFD) could contribute to the early occurrence of hepatic insulin resistance and to determine the role of cytosolic phospholipase A2α (cPLA2α) in this process. The 3-day HFD caused a significant upregulation of cPLA2α in periepididymal fat and in the liver. A specific antisense oligonucleotide (AS) effectively prevented cPLA2α induction, neutrophil infiltration into adipose tissue (likely involving MIP-2), and protected against 3-day HFD–induced impairment in hepatic insulin signaling and glucose over-production from pyruvate. To sort out the role of adipose neutrophil infiltration independent of cPLA2α induction in the liver, mice were injected intraperitoneally with anti–intracellular adhesion molecule-1 (ICAM-1) antibodies. This effectively prevented neutrophil infiltration without affecting cPLA2α or MIP-2, but like AS, prevented impairment in hepatic insulin signaling, the enhanced pyruvate-to-glucose flux, and the impaired insulin-mediated suppression of hepatic glucose production (assessed by clamp), which were induced by the 3-day HFD. Adipose tissue secretion of tumor necrosis factor-α (TNF-α) was increased by the 3-day HFD, but not if mice were treated with AS or ICAM-1 antibodies. Moreover, systemic TNF-α neutralization prevented 3-day HFD–induced hepatic insulin resistance, suggesting its mediatory role. We propose that an acute, cPLA2α-dependent, neutrophil-dominated inflammatory response of adipose tissue contributes to hepatic insulin resistance and glucose overproduction in the early adaptation to high-fat feeding.


Physiology | 2014

The Gut-Adipose-Liver Axis in the Metabolic Syndrome

Daniel Konrad; Stephan Wueest

Obesity is associated with altered gut microbiota composition and impaired gut barrier function. These changes, together with interrelated mesenteric adipose tissue inflammation, result in increased release of pro-inflammatory cytokines, bacteria-derived factors, and lipids into the portal circulation, promoting the development of (hepatic) insulin resistance. Herein, the potential impact of obesity-related changes in gut and visceral adipose tissue biology on the development of insulin resistance and Type 2 diabetes is reviewed.

Collaboration


Dive into the Stephan Wueest's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugen J. Schoenle

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Flurin Item

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Assaf Rudich

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto A. Rapold

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge