Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephane Angers is active.

Publication


Featured researches published by Stephane Angers.


Nature Reviews Molecular Cell Biology | 2009

Proximal events in Wnt signal transduction

Stephane Angers; Randall T. Moon

The Wnt family of secreted ligands act through many receptors to stimulate distinct intracellular signalling pathways in embryonic development, in adults and in disease processes. Binding of Wnt to the Frizzled family of receptors and to low density lipoprotein receptor-related protein 5 (LRP5) or LRP6 co-receptors stimulates the intracellular Wnt–β-catenin signalling pathway, which regulates β-catenin stability and context-dependent transcription. This signalling pathway controls many processes, such as cell fate determination, cell proliferation and self-renewal of stem and progenitor cells. Intriguingly, the transmembrane receptor Tyr kinases Ror2 and Ryk, as well as Frizzled receptors that act independently of LRP5 or LRP6, function as receptors for Wnt and activate β-catenin-independent pathways. This leads to changes in cell movement and polarity and to the antagonism of the β-catenin pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2000

Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET).

Stephane Angers; Ali Salahpour; Eric Joly; Sandrine Hilairet; Dan Chelsky; Michael Dennis; Michel Bouvier

Heptahelical receptors that interact with heterotrimeric G proteins represent the largest family of proteins involved in signal transduction across biological membranes. Although these receptors generally were believed to be monomeric entities, a growing body of evidence suggests that they may form functionally relevant dimers. However, a definitive demonstration of the existence of G protein-coupled receptor (GPCR) dimers at the surface of living cells is still lacking. Here, using bioluminescence resonance energy transfer (BRET), as a protein-protein interaction assay in whole cells, we unambiguously demonstrate that the human beta(2)-adrenergic receptor (beta(2)AR) forms constitutive homodimers when expressed in HEK-293 cells. Receptor stimulation with the hydrophilic agonist isoproterenol led to an increase in the transfer of energy between beta(2)AR molecules genetically fused to the BRET donor (Renilla luciferase) and acceptor (green fluorescent protein), respectively, indicating that the agonist interacts with receptor dimers at the cell surface. Inhibition of receptor internalization did not prevent agonist-promoted BRET, demonstrating that it did not result from clustering of receptors within endosomes. The notion that receptor dimers exist at the cell surface was confirmed further by the observation that BS3, a cell-impermeable cross-linking agent, increased BRET between beta(2)AR molecules. The selectivity of the constitutive interaction was documented by demonstrating that no BRET occurred between the beta(2)AR and two other unrelated GPCR. In contrast, the well characterized agonist-dependent interaction between the beta(2)AR and the regulatory protein beta-arrestin could be monitored by BRET. Taken together, the data demonstrate that GPCR exist as functional dimers in vivo and that BRET-based assays can be used to study both constitutive and hormone-promoted selective protein-protein interactions.


Journal of Clinical Investigation | 2000

Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants

Jean-Pierre Morello; Ali Salahpour; André Laperrière; Virginie Bernier; Marie-Françoise Arthus; Michèle Lonergan; Ulla E. Petäjä-Repo; Stephane Angers; Denis Morin; Daniel G. Bichet; Michel Bouvier

Over 150 mutations within the coding sequence of the V2 vasopressin receptor (V2R) gene are known to cause nephrogenic diabetes insipidus (NDI). A large number of these mutant receptors fail to fold properly and therefore are not routed to the cell surface. Here we show that selective, nonpeptidic V2R antagonists dramatically increase cell-surface expression and rescue the function of 8 mutant NDI-V2Rs by promoting their proper folding and maturation. A cell-impermeant V2R antagonist could not mimic these effects and was unable to block the rescue mediated by a permeant agent, indicating that the nonpeptidic antagonists act intracellularly, presumably by binding to and stabilizing partially folded mutants. In addition to opening new therapeutic avenues for NDI patients, these data demonstrate that by binding to newly synthesized mutant receptors, small ligands can act as pharmacological chaperones, promoting the proper folding and maturation of receptors and their targeting to the cell surface.


Proceedings of the National Academy of Sciences of the United States of America | 2003

β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors

Mounia Azzi; Pascale G. Charest; Stephane Angers; Guy Rousseau; Trudy Kohout; Michel Bouvier; Graciela Piñeyro

It is becoming increasingly clear that signaling via G protein-coupled receptors is a diverse phenomenon involving receptor interaction with a variety of signaling partners. Despite this diversity, receptor ligands are commonly classified only according to their ability to modify G protein-dependent signaling. Here we show that β2AR ligands like ICI118551 and propranolol, which are inverse agonists for Gs-stimulated adenylyl cyclase, induce partial agonist responses for the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) 1/2 thus behaving as dual efficacy ligands. ERK1/2 activation by dual efficacy ligands was not affected by ADP-ribosylation of Gαi and could be observed in S49-cyc– cells lacking Gαs indicating that, unlike the conventional agonist isoproterenol, these drugs induce ERK1/2 activation in a Gs/i-independent manner. In contrast, this activation was inhibited by a dominant negative mutant of β-arrestin and was abolished in mouse embryonic fibroblasts lacking β-arrestin 1 and 2. The role of β-arrestin was further confirmed by showing that transfection of β-arrestin 2 in these knockout cells restored ICI118551 promoted ERK1/2 activation. ICI118551 and propranolol also promoted β-arrestin recruitment to the receptor. Taken together, these observations suggest that β-arrestin recruitment is not an exclusive property of agonists, and that ligands classically classified as inverse agonists rely exclusively on β-arrestin for their positive signaling activity. This phenomenon is not unique to β2-adrenergic ligands because SR121463B, an inverse agonist on the V2 vasopressin receptor-stimulated adenylyl cyclase, recruited β-arrestin and stimulated ERK1/2. These results point to a multistate model of receptor activation in which ligand-specific conformations are capable of differentially activating distinct signaling partners.


Nature | 2006

Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery.

Stephane Angers; Ti Li; Xianhua Yi; Michael J. MacCoss; Randall T. Moon; Ning Zheng

Protein ubiquitination is a common form of post-translational modification that regulates a broad spectrum of protein substrates in diverse cellular pathways. Through a three-enzyme (E1–E2–E3) cascade, the attachment of ubiquitin to proteins is catalysed by the E3 ubiquitin ligase, which is best represented by the superfamily of the cullin-RING complexes. Conserved from yeast to human, the DDB1–CUL4–ROC1 complex is a recently identified cullin-RING ubiquitin ligase, which regulates DNA repair, DNA replication and transcription, and can also be subverted by pathogenic viruses to benefit viral infection. Lacking a canonical SKP1-like cullin adaptor and a defined substrate recruitment module, how the DDB1–CUL4–ROC1 E3 apparatus is assembled for ubiquitinating various substrates remains unclear. Here we present crystallographic analyses of the virally hijacked form of the human DDB1–CUL4A–ROC1 machinery, which show that DDB1 uses one β-propeller domain for cullin scaffold binding and a variably attached separate double-β-propeller fold for substrate presentation. Through tandem-affinity purification of human DDB1 and CUL4A complexes followed by mass spectrometry analysis, we then identify a novel family of WD40-repeat proteins, which directly bind to the double-propeller fold of DDB1 and serve as the substrate-recruiting module of the E3. Together, our structural and proteomic results reveal the structural mechanisms and molecular logic underlying the assembly and versatility of a new family of cullin-RING E3 complexes.


Annual Review of Cell and Developmental Biology | 2011

Gli Proteins in Development and Disease

Chi-chung Hui; Stephane Angers

Gli zinc-finger proteins are transcription factors involved in the intracellular signal transduction controlled by the Hedgehog family of secreted molecules. They are frequently mutated in human congenital malformations, and their abnormal regulation leads to tumorigenesis. Genetic studies in several model systems indicate that their activity is tightly regulated by Hedgehog signaling through various posttranslational modifications, including phosphorylation, ubiquitin-mediated degradation, and proteolytic processing, as well as through nucleocytoplasmic shuttling. In vertebrate cells, primary cilia are required for the sensing of Hedgehog pathway activity and involved in the processing and activation of Gli proteins. Two evolutionarily conserved Hedgehog pathway components, Suppressor of fused and Kif7, are core intracellular regulators of mammalian Gli proteins. Recent studies revealed that Gli proteins are also regulated transcriptionally and posttranslationally through noncanonical mechanisms independent of Hedgehog signaling. In this review, we describe the regulation of Gli proteins during development and discuss possible mechanisms for their abnormal activation during tumorigenesis.


Cell | 2015

High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities

Traver Hart; Megha Chandrashekhar; Michael Aregger; Zachary Steinhart; Kevin R. Brown; Graham MacLeod; Monika Mis; Michal Zimmermann; Amélie Fradet-Turcotte; Song Sun; Patricia Mero; Peter Dirks; Sachdev S. Sidhu; Frederick P. Roth; Olivia S. Rissland; Daniel Durocher; Stephane Angers; Jason Moffat

The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell.


The Journal of Neuroscience | 2009

Glutamate Transporter Coupling to Na,K-ATPase

Erin M. Rose; Joseph C.P Koo; Jordan E. Antflick; Syed M. Ahmed; Stephane Angers; David R. Hampson

Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPase inhibitor ouabain on glutamate transporter activity, we postulated that glutamate transporters are directly coupled to Na,K-ATPase and that Na,K-ATPase is an essential modulator of glutamate uptake. Na,K-ATPase was purified from rat cerebellum by tandem anion exchange and ouabain affinity chromatography, and the cohort of associated proteins was characterized by mass spectrometry. The α1–α3 subunits of Na,K-ATPase were detected, as were the glutamate transporters GLAST and GLT-1, demonstrating that glutamate transporters copurify with Na,K-ATPases. The link between glutamate transporters and Na,K-ATPase was further established by coimmunoprecipitation and colocalization. Analysis of the regulation of glutamate transporter and Na,K-ATPase activities was assessed using [3H]d-aspartate, [3H]l-glutamate, and rubidium-86 uptake into synaptosomes and cultured astrocytes. In synaptosomes, ouabain produced a dose-dependent inhibition of glutamate transporter and Na,K-ATPase activities, whereas in astrocytes, ouabain showed a bimodal effect whereby glutamate transporter activity was stimulated at 1 μm ouabain and inhibited at higher concentrations. The effects of protein kinase inhibitors on [3H]d-aspartate uptake indicated the selective involvement of Src kinases, which are probably a component of the Na,K-ATPase/glutamate transporter complex. These findings demonstrate that glutamate transporters and Na,K-ATPases are part of the same macromolecular complexes and operate as a functional unit to regulate glutamatergic neurotransmission.


Journal of Biological Chemistry | 2002

Constitutive Agonist-independent CCR5 Oligomerization and Antibody-mediated Clustering Occurring at Physiological Levels of Receptors

Hassan Issafras; Stephane Angers; Sébastien Bulenger; Cédric Blanpain; Marc Parmentier; Catherine Labbé-Jullié; Michel Bouvier; Stefano Marullo

Although homo-oligomerization has been reported for several G protein-coupled receptors, this phenomenon was not studied at low concentrations of receptors. Furthermore, it is not clear whether homo-oligomerization corresponds to an intrinsic property of nascent receptors or if it is a consequence of receptor activation. Here CCR5 receptor oligomerization was studied by bioluminescence resonance energy transfer (BRET) in cells expressing physiological levels of receptors. A strong energy transfer could be observed, in the absence of ligands, in whole cells and in both endoplasmic reticulum and plasma membrane subfractions, supporting the hypothesis of a constitutive oligomerization that occurs early after biosynthesis. No change in BRET was observed upon agonist binding, indicating that the extent of oligomerization is unrelated to the activation state of the receptor. In contrast, a robust increase of BRET, induced by a monoclonal antibody known to promote receptor clustering, suggests that microaggregation of preformed receptor homo-oligomers can occur. Taken together, our data indicate that constitutive receptor homo-oligomerization has a biologically relevant significance and might be involved in the process of receptor biosynthesis.


Nature | 2016

Visualization of a short-range Wnt gradient in the intestinal stem-cell niche

Farin Hf; Ingrid Jordens; Mosa Mh; Onur Basak; Jeroen Korving; Daniele V. F. Tauriello; de Punder K; Stephane Angers; Peter J. Peters; Madelon M. Maurice; Hans Clevers

Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and ‘plasma membrane dilution’ through cell division shape the epithelial Wnt3 gradient.

Collaboration


Dive into the Stephane Angers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Bouvier

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Traver Hart

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge