Stéphane Avner
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Avner.
Genome Research | 2011
Aurélien A. Sérandour; Stéphane Avner; Frédéric Percevault; Florence Demay; Maud Bizot; Céline Lucchetti-Miganeh; Frédérique Barloy-Hubler; Myles Brown; Mathieu Lupien; Raphaël Métivier; Gilles Salbert; Jérôme Eeckhoute
Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation.
Journal of Biological Chemistry | 2014
Frédérik Oger; Julie Dubois-Chevalier; Céline Gheeraert; Stéphane Avner; Emmanuelle Durand; Philippe Froguel; Gilles Salbert; Bart Staels; Philippe Lefebvre; Jérôme Eeckhoute
Background: The transcription factor PPARγ is required for adipocyte differentiation. Results: PPARγ activates genes involved in lipid metabolism and in insulin/IGF signaling through two distinct functional classes of transcriptional enhancers. Conclusion: Both broadly active and cell type-specific enhancers are involved in PPARγ-mediated transcriptional regulations during adipogenesis. Significance: Broadly active enhancers are used by cell type-specific transcription factors to finely tune conserved biological processes/pathways. The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ is a transcription factor whose expression is induced during adipogenesis and that is required for the acquisition and control of mature adipocyte functions. Indeed, PPARγ induces the expression of genes involved in lipid synthesis and storage through enhancers activated during adipocyte differentiation. Here, we show that PPARγ also binds to enhancers already active in preadipocytes as evidenced by an active chromatin state including lower DNA methylation levels despite higher CpG content. These constitutive enhancers are linked to genes involved in the insulin/insulin-like growth factor signaling pathway that are transcriptionally induced during adipogenesis but to a lower extent than lipid metabolism genes, because of stronger basal expression levels in preadipocytes. This is consistent with the sequential involvement of hormonal sensitivity and lipid handling during adipocyte maturation and correlates with the chromatin structure dynamics at constitutive and activated enhancers. Interestingly, constitutive enhancers are evolutionary conserved and can be activated in other tissues, in contrast to enhancers controlling lipid handling genes whose activation is more restricted to adipocytes. Thus, PPARγ utilizes both broadly active and cell type-specific enhancers to modulate the dynamic range of activation of genes involved in the adipogenic process.
Cell Reports | 2015
Gersende Caron; Mourad Hussein; Marta Kulis; Céline Delaloy; fabrice chatonnet; Amandine Pignarre; Stéphane Avner; Maud Lemarié; Elise A. Mahé; Núria Verdaguer-Dot; Ana C. Queirós; Karin Tarte; José I. Martín-Subero; Gilles Salbert; Thierry Fest
Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-?1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxy)methylation, and cell fate determination.
Molecular and Cellular Biology | 2014
Justine Quintin; Christine Le Péron; Gaëlle Palierne; Maud Bizot; Stéphanie Cunha; Aurélien A. Sérandour; Stéphane Avner; Catherine Henry; Frédéric Percevault; Marc-Antoine Belaud-Rotureau; Sébastien Huet; Erwan Watrin; Jérôme Eeckhoute; Vincent Legagneux; Gilles Salbert; Raphaël Métivier
ABSTRACT Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.
Molecular Endocrinology | 2016
Gaëlle Palierne; Aurelie Fabre; Romain Solinhac; Christine Le Péron; Stéphane Avner; Françoise Lenfant; Coralie Fontaine; Gilles Salbert; Gilles Flouriot; Jean-François Arnal; Raphaël Métivier
Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue.
Genome Biology | 2016
Aurélien A. Sérandour; Stéphane Avner; Elise A. Mahé; Thierry Madigou; Sylvain Guibert; Michael Weber; Gilles Salbert
Conventional techniques for single-base resolution mapping of epigenetic modifications of DNA such as 5-hydroxymethylcytosine (5hmC) rely on the sequencing of bisulfite-modified DNA. Here we present an alternative approach called SCL-exo which combines selective chemical labeling (SCL) of 5hmC in genomic DNA with exonuclease (exo) digestion of the bead-trapped modified DNA molecules. Associated with a straightforward bioinformatic analysis, this new procedure provides an unbiased and fast method for mapping this epigenetic mark at high resolution. Implemented on mouse genomic DNA from in vitro-differentiated neural precursor cells, SCL-exo sheds light on an intrinsic lack of conservation of hydroxymethylated CpGs across vertebrates.
BMC Genomics | 2008
David Thybert; Stéphane Avner; Céline Lucchetti-Miganeh; Angélique Chéron; Frédérique Barloy-Hubler
BackgroundOxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description.DescriptionIn order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface.ConclusionOxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software
Genome Research | 2017
Elise A. Mahé; Thierry Madigou; Aurélien A. Sérandour; Maud Bizot; Stéphane Avner; Frédéric Chalmel; Gaëlle Palierne; Raphaël Métivier; Gilles Salbert
Epigenetic mechanisms are believed to play key roles in the establishment of cell-specific transcription programs. Accordingly, the modified bases 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) have been observed in DNA of genomic regulatory regions such as enhancers, and oxidation of 5mC into 5hmC by Ten-eleven translocation (TET) proteins correlates with enhancer activation. However, the functional relationship between cytosine modifications and the chromatin architecture of enhancers remains elusive. To gain insights into their function, 5mC and 5hmC levels were perturbed by inhibiting DNA methyltransferases and TETs during differentiation of mouse embryonal carcinoma cells into neural progenitors, and chromatin characteristics of enhancers bound by the pioneer transcription factors FOXA1, MEIS1, and PBX1 were interrogated. In a large fraction of the tested enhancers, inhibition of DNA methylation was associated with a significant increase in monomethylation of H3K4, a characteristic mark of enhancer priming. In addition, at some specific enhancers, 5mC oxidation by TETs facilitated chromatin opening, a process that may stabilize MEIS1 binding to these genomic regions.
Nucleic Acids Research | 2018
Lydie Debaize; Hélène Jakobczyk; Stéphane Avner; Jérémie Gaudichon; Anne-Gaëlle Rio; Aurélien A Sérandour; Lena Dorsheimer; Frédéric Chalmel; Jason S. Carroll; Martin Zörnig; Michael A. Rieger; Olivier Delalande; Gilles Salbert; Marie-Dominique Galibert; Virginie Gandemer; Marie-Bérengère Troadec
Abstract Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Nucleic Acids Research | 2012
Aurélien A. Sérandour; Stéphane Avner; Frédérik Oger; Maud Bizot; Frédéric Percevault; Céline Lucchetti-Miganeh; Gaëlle Palierne; Céline Gheeraert; Frédérique Barloy-Hubler; Christine Le Péron; Thierry Madigou; Emmanuelle Durand; Philippe Froguel; Bart Staels; Philippe Lefebvre; Raphaël Métivier; Jérôme Eeckhoute; Gilles Salbert