Stéphane Cotin
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Cotin.
Medical Image Analysis | 2003
Amy E. Kerdok; Stéphane Cotin; Mark P. Ottensmeyer; Anna M. Galea; Robert D. Howe; Steven L. Dawson
Accurate real-time models of soft tissue behavior are key elements in medical simulation systems. The need for fast computation in these simulations, however, often requires simplifications that limit deformation accuracy. Validation of these simplified models remains a challenge. Currently, real-time modeling is at best validated against finite element models that have their own intrinsic limitations. This study develops a physical standard to validate real-time soft tissue deformation models. We took CT images of a cube of silicone rubber with a pattern of embedded Teflon spheres that underwent uniaxial compression and spherical indentation tests. The known material properties, geometry and controlled boundary conditions resulted in a complete set of volumetric displacement data. The results were compared to a finite element model analysis of identical situations. This work has served as a proof of concept for a robust physical standard for use in validating soft tissue models. A web site has been created to provide access to our database: http://biorobotics.harvard.edu/truthcube/ (soon to be http://www.truthcube.org).
medical image computing and computer assisted intervention | 2002
Stéphane Cotin; Nicholas Stylopoulos; Mark P. Ottensmeyer; Paul F. Neumann; David W. Rattner; Steven L. Dawson
Metrics are widely employed in virtual environments and provide a yardstick for performance measurement. The current method of defining metrics for medical simulation remains more an art than a science. Herein, we report a practical scientific approach to defining metrics, specifically aimed at computer-assisted laparoscopic skills training. We also propose a standardized global scoring system usable across different laparoscopic trainers and tasks. The metrics were defined in an explicit way based on the relevant skills that a laparoscopic surgeon should master. We used a five degree of freedom device and a software platform capable of 1) tracking the motion of two laparoscopic instruments 2) real time information processing and feedback provision. A validation study was performed. The results show that our metrics and scoring system represent a technically sound approach that can be easily incorporated in a computerized trainer for any task, enabling a standardized performance assessment method.
Computer Aided Surgery | 2006
Christian Duriez; Stéphane Cotin; Julien Lenoir; Paul E. Neumann
For over 20 years, interventional methods have improved the outcomes of patients with cardiovascular disease. However, these procedures require an intricate combination of visual and tactile feedback and extensive training. In this paper, we describe a series of novel approaches that have led to the development of a high-fidelity simulation system for interventional neuroradiology. In particular, we focus on a new approach for real-time deformation of devices such as catheters and guidewires during navigation inside complex vascular networks. This approach combines a real-time incremental Finite Element Model (FEM), an optimization strategy based on substructure decomposition, and a new method for handling collision response in situations where the number of contact points is very large. We also briefly describe other aspects of the simulation system, from patient-specific segmentation to the simulation of contrast agent propagation and fast volume-rendering techniques for generating synthetic X-ray images in real time. Although currently targeted at stroke therapy, our results are applicable to the simulation of any interventional radiology procedure.
Computers & Graphics | 2006
Julien Lenoir; Stéphane Cotin; Christian Duriez; Paul F. Neumann
For over 20 years, interventional methods have improved the outcomes of patients with cardiovascular disease or stroke. However, these procedures require an intricate combination of visual and tactile feedback and extensive training periods. An essential part of this training relates to catheter or guidewire manipulation. In this paper, we propose a composite model to realistically simulate a catheter, a guidewire or a combination of both. Where a physics-based simulation of both devices would be computationally prohibitive and would require to deal with a large number of contacts, we propose to address this problem by replacing both objects by a composite model. This model has a dual visual representation and can dynamically change its material properties to locally describe a combination of both devices. Results show that the composite model exhibits the same characteristics of a catheter/guidewire combination while maintaining real-time interaction.
Surgical Endoscopy and Other Interventional Techniques | 2004
Nicholas Stylopoulos; Stéphane Cotin; S.K. Maithel; Mark P. Ottensmeyer; P.G. Jackson; Ryan Scott Bardsley; P.F. Neumann; David W. Rattner; Steven L. Dawson
BackgroundThere is a large and growing gap between the need for better surgical training methodologies and the systems currently available for such training. In an effort to bridge this gap and overcome the disadvantages of the training simulators now in use, we developed the Computer-Enhanced Laparoscopic Training System (CELTS).MethodsCELTS is a computer-based system capable of tracking the motion of laparoscopic instruments and providing feedback about performance in real time. CELTS consists of a mechanical interface, a customizable set of tasks, and an Internet-based software interface. The special cognitive and psychomotor skills a laparoscopic surgeon should master were explicitly defined and transformed into quantitative metrics based on kinematics analysis theory. A single global standardized and task-independent scoring system utilizing a z-score statistic was developed. Validation exercises were performed.ResultsThe scoring system clearly revealed a gap between experts and trainees, irrespective of the task performed; none of the trainees obtained a score above the threshold that distinguishes the two groups. Moreover, CELTS provided educational feedback by identifying the key factors that contributed to the overall score. Among the defined metrics, depth perception, smoothness of motion, instrument orientation, and the outcome of the task are major indicators of performance and key parameters that distinguish experts from trainees. Time and path length alone, which are the most commonly used metrics in currently available systems, are not considered good indicators of performance.ConclusionCELTS is a novel and standardized skills trainer that combines the advantages of computer simulation with the features of the traditional and popular training boxes. CELTS can easily be used with a wide array of tasks and ensures comparability across different training conditions. This report further shows that a set of appropriate and clinically relevant performance metrics can be defined and a standardized scoring system can be designed.
Medical Image Analysis | 2011
Xunlei Wu; Vincent Luboz; Karl Krissian; Stéphane Cotin; Steven L. Dawson
We propose a technique to obtain accurate and smooth surfaces of patient specific vascular structures, using two steps: segmentation and reconstruction. The first step provides accurate and smooth centerlines of the vessels, together with cross section orientations and cross section fitting. The initial centerlines are obtained from a homotopic thinning of the vessels segmented using a level set method. In addition to circle fitting, an iterative scheme fitting ellipses to the cross sections and correcting the centerline positions is proposed, leading to a strong improvement of the cross section orientations and of the location of the centerlines. The second step consists of reconstructing the surface based on this data, by generating a set of topologically preserved quadrilateral patches of branching tubular structures. It improves Felkels meshing method (Felkel et al., 2004) by: allowing a vessel to have multiple parents and children, reducing undersampling artifacts, and adapting the cross section distribution. Experiments, on phantom and real datasets, show that the proposed technique reaches a good balance in terms of smoothness, number of triangles, and distance error. This technique can be applied in interventional radiology simulations, virtual endoscopy and in reconstruction of smooth and accurate three-dimensional models for use in simulation.
medical image computing and computer assisted intervention | 2007
Xunlei Wu; Jérémie Allard; Stéphane Cotin
Interventional neuroradiology is a growing field of minimally invasive therapies that includes embolization of aneurysms and arteriovenous malformations, carotid angioplasty and carotid stenting, and acute stroke therapy. Treatment is performed using image-guided instrument navigation through the patients vasculature and requires intricate combination of visual and tactile coordination. In this paper we present a series of techniques for real-time high-fidelity simulation of angiographic studies. We focus in particular on the computation and visualization of blood flow and blood pressure distribution patterns, mixing of blood and contrast agent, and high-fidelity simulation of fluoroscopic images.
medical image computing and computer assisted intervention | 2007
Jérémie Dequidt; Julien Lenoir; Stéphane Cotin
Accurately describing interactions between medical devices and anatomical structures, or between anatomical structures themselves, is an essential step towards the adoption of computer-based medical simulation as an alternative to traditional training methods. However, while substantial work has been done in the area of real-time soft tissue modeling, little has been done to study the problem of contacts occurring during tissue manipulation. In this paper we introduce a new method for correctly handling complex contacts between various combination of rigid and deformable objects. Our approach verifies Signorinis law by combining Lagrange multipliers and the status method to solve unilateral constraints. Our method handles both concave and convex surfaces by using a displacement subdivision strategy, and the proposed algorithm allows interactive computation times even in very constrained situations. We demonstrate the efficiency of our approach in the context of interventional radiology, with the navigation of catheters and guidewires in tortuous vessels and with the deployment of coils to treat aneurysms.
VRIPHYS - Virtual Reality Interaction and Physical Simulation | 2010
Hadrien Courtecuisse; Jérémie Allard; Christian Duriez; Stéphane Cotin
In this paper, we present a set of methods to improve numerical solvers, as used in real-time non-linear deformable models based on implicit integration schemes. The proposed approach is particularly beneficial to simulate nonhomogeneous objects or ill-conditioned problem at high frequency. The first contribution is to desynchronize the computation of a preconditioner from the simulation loop.We also exploit todays heterogeneous parallel architectures: the graphic processor performs the mechanical computations whereas the CPU produces efficient preconditioners for the simulation. Moreover, we propose to take advantage of a warping method to limit the divergence of the preconditioner over time. Finally, we validate our work with several preconditioners on different deformable models. In typical scenarios, our method improves significantly the performances of the perconditioned version of the conjugate gradient.
Archive | 2012
Yiyi Wei; Stéphane Cotin; Jérémie Dequidt; Christian Duriez; Jérémie Allard; Erwan Kerrien
An aneurysm is an abnormal widening of a blood vessel. As the vessel widens, it also gets thinner and weaker, with an increasing risk of rupture. Aneurysms are essentially found in the aorta, the popliteal artery, mesenteric artery, and cerebral arteries. Intracranial aneurysms are smaller than other types of aneurysm and mostly saccular. Though most patients do not experience rupture, it can lead to a stroke, brain damage and potential death. The mortality rate after rupture is considerably high: the incidence of sudden death was estimated to be 12.4% and death rate ranged from 32% to 67% after the hemorrhage [16]. Each year, over 12,000 people die in the United States due to rupture of intracranial aneurysms [17].