Stéphane Emiliani
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Emiliani.
Nature | 2011
Nadine Laguette; Bijan Sobhian; Nicoletta Casartelli; Mathieu Ringeard; Christine Chable-Bessia; Emmanuel Ségéral; Ahmad Yatim; Stéphane Emiliani; Olivier Schwartz; Monsef Benkirane
The primate lentivirus auxiliary protein Vpx counteracts an unknown restriction factor that renders human dendritic and myeloid cells largely refractory to HIV-1 infection. Here we identify SAMHD1 as this restriction factor. SAMHD1 is a protein involved in Aicardi–Goutières syndrome, a genetic encephalopathy with symptoms mimicking congenital viral infection, that has been proposed to act as a negative regulator of the interferon response. We show that Vpx induces proteasomal degradation of SAMHD1. Silencing of SAMHD1 in non-permissive cell lines alleviates HIV-1 restriction and is associated with a significant accumulation of viral DNA in infected cells. Concurrently, overexpression of SAMHD1 in sensitive cells inhibits HIV-1 infection. The putative phosphohydrolase activity of SAMHD1 is probably required for HIV-1 restriction. Vpx-mediated relief of restriction is abolished in SAMHD1-negative cells. Finally, silencing of SAMHD1 markedly increases the susceptibility of monocytic-derived dendritic cells to infection. Our results demonstrate that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle.
Current Biology | 2008
Frauke Christ; Wannes Thys; Jan De Rijck; Rik Gijsbers; Alberto Albanese; Daniele Arosio; Stéphane Emiliani; Jean-Christophe Rain; Richard Benarous; Anna Cereseto; Zeger Debyser
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) and other lentiviruses have the capacity to infect nondividing cells like macrophages. This requires import of the preintegration complex (PIC) through the nuclear pore. Although many cellular and viral determinants have been proposed, the mechanism leading to nuclear import is not yet understood. RESULTS Using yeast two-hybrid and pull-down, we identified and validated transportin-SR2 (TRN-SR2) as a bona fide binding partner of HIV-1 integrase. We confirmed the biological relevance of this interaction by RNAi. Depletion of TRN-SR2 interfered with the replication of HIV-1 and HIV-2 but not MoMLV in HeLaP4 cells. Knockdown of TRN-SR2 in primary macrophages likewise interfered with HIV-1 replication. Using Q-PCR, we pinpoint this block in replication to the early steps of the viral lifecycle. A reduction in 2-LTR formation suggests a block in PIC nuclear import upon siRNA-mediated knockdown. Different lines of evidence clearly proved that the late steps of viral replication are not affected. In an in vivo nuclear-import assay using labeled HIV-1 particles, the defect in nuclear import after depletion of TRN-SR2 was directly visualized. In comparison with control cell lines, the great majority of siRNA-treated cells did not contain any PIC in the nucleus. CONCLUSION Our data clearly demonstrate that TRN-SR2 is the nuclear-import factor of HIV.
Nature Cell Biology | 2003
Vanessa Brès; Rosemary Kiernan; Laetitia K. Linares; Christine Chable-Bessia; Olga Plechakova; Céline Tréand; Stéphane Emiliani; Jean-Marie Peloponese; Kuan-Teh Jeang; Olivier Coux; Martin Scheffner; Monsef Benkirane
The human immunodeficiency virus type 1 (HIV-1) encodes a potent transactivator, Tat, which functions through binding to a short leader RNA, called transactivation responsive element (TAR). Recent studies suggest that Tat activates the HIV-1 long terminal repeat (LTR), mainly by adapting co-activator complexes, such as p300, PCAF and the positive transcription elongation factor P-TEFb, to the promoter. Here, we show that the proto-oncoprotein Hdm2 interacts with Tat and mediates its ubiquitination in vitro and in vivo. In addition, Hdm2 is a positive regulator of Tat-mediated transactivation, indicating that the transcriptional properties of Tat are stimulated by ubiquitination. Fusion of ubiquitin to Tat bypasses the requirement of Hdm2 for efficient transactivation, supporting the notion that ubiquitin has a non-proteolytic function in Tat-mediated transactivation.
The EMBO Journal | 2002
Vanessa Brès; Hideaki Tagami; Jean-Marie Peloponese; Erwan Loret; Kuan-Teh Jeang; Yoshihiro Nakatani; Stéphane Emiliani; Monsef Benkirane; Rosemary Kiernan
The HIV‐1 transactivator protein, Tat, is an atypical transcriptional activator that functions through binding, not to DNA, but to a short leader RNA, TAR. Although details of its functional mechanism are still unknown, emerging findings suggest that Tat serves primarily to adapt co‐activator complexes such as p300, PCAF and P‐TEFb to the HIV‐1 long terminal repeat. Hence, an understanding of how Tat interacts with these cofactors is crucial. It has recently been shown that acetylation at a single lysine, residue 50, regulated the association of Tat with PCAF. Here, we report that in the absence of Tat acetylation, PCAF binds to amino acids 20–40 within Tat. Interestingly, acetylation of Tat at Lys28 abrogates Tat–PCAF interaction. Acetylation at Lys50 creates a new site for binding to PCAF and dictates the formation of a ternary complex of Tat–PCAF–P‐TEFb. Thus, differential lysine acetylation of Tat coordinates the interactions with its co‐activators, cyclin T1 and PCAF. Our results may help in understanding the ordered recruitment of Tat co‐activators to the HIV‐1 promoter.
The EMBO Journal | 2009
Fabrice Michel; Corinne Crucifix; Florence Granger; Sylvia Eiler; Jean-François Mouscadet; Sergei Korolev; Julia Agapkina; Rustam Ziganshin; Marina Gottikh; Alexis Nazabal; Stéphane Emiliani; Richard Benarous; Dino Moras; Patrick Schultz; Marc Ruff
Integration of the human immunodeficiency virus (HIV‐1) cDNA into the human genome is catalysed by integrase. Several studies have shown the importance of the interaction of cellular cofactors with integrase for viral integration and infectivity. In this study, we produced a stable and functional complex between the wild‐type full‐length integrase (IN) and the cellular cofactor LEDGF/p75 that shows enhanced in vitro integration activity compared with the integrase alone. Mass spectrometry analysis and the fitting of known atomic structures in cryo negatively stain electron microscopy (EM) maps revealed that the functional unit comprises two asymmetric integrase dimers and two LEDGF/p75 molecules. In the presence of DNA, EM revealed the DNA‐binding sites and indicated that, in each asymmetric dimer, one integrase molecule performs the catalytic reaction, whereas the other one positions the viral DNA in the active site of the opposite dimer. The positions of the target and viral DNAs for the 3′ processing and integration reaction shed light on the integration mechanism, a process with wide implications for the understanding of viral‐induced pathologies.
Molecular and Cellular Biology | 2001
Rosemary Kiernan; Stéphane Emiliani; Keiko Nakayama; Anna Castro; Jean-Claude Labbé; Thierry Lorca; Keiichi I. Nakayama; Monsef Benkirane
ABSTRACT CDK9 paired with cyclin T1 forms the human P-TEFb complex and stimulates productive transcription through phosphorylation of the RNA polymerase II C-terminal domain. Here we report that CDK9 is ubiquitinated and degraded by the proteasome whereas cyclin T1 is stable. SCFSKP2 was recruited to CDK9/cyclin T1 via cyclin T1 in an interaction requiring its PEST domain. CDK9 ubiquitination was modulated by cyclin T1 and p45SKP2. CDK9 accumulated in p45SKP2−/− cells, and its expression during the cell cycle was periodic. The transcriptional activity of CDK9/cyclin T1 on the class II major histocompatibility complex promoter could be regulated by CDK9 degradation in vivo. We propose a novel mechanism whereby recruitment of SCFSKP2 is mediated by cyclin T1 while ubiquitination occurs exclusively on CDK9.
Retrovirology | 2013
Erwann Le Rouzic; Damien Bonnard; Sophie Chasset; Jean-Michel Bruneau; Francis Chevreuil; Frédéric Le Strat; Juliette Nguyen; Roxane Beauvoir; Céline Amadori; Julie Brias; Sophie Vomscheid; Sylvia Eiler; Nicolas Lévy; Olivier Delelis; Eric Deprez; Ali Saïb; Alessia Zamborlini; Stéphane Emiliani; Marc Ruff; Benoit Ledoussal; François Moreau; Richard Benarous
BackgroundLEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction.ResultsWe describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket.ConclusionMut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral activity at integration, but not in the cytoplasm where post-integration production of infectious viral particles takes place.
Methods | 2009
Jean-Christophe Rain; Alexandra Cribier; Annabelle Gérard; Stéphane Emiliani; Richard Benarous
Here we describe methods developed based on systematic yeast two-hybrid screenings that allowed us to identify several binding partners of HIV-1 integrase. We have developed an efficient strategy to perform large comprehensive screenings with different highly complex cDNA libraries derived both random- and oligo-dT primed reactions. A very efficient mating procedure was used for screening in yeast, allowing genetic saturation of positive clones. This importantly leads with confidence to the determination of the regions within the participating proteins responsible for the interactions. Several additional tools were used that allowed us to assess the specificity of the interactions detected, including rebound screens with cellular co-factors as baits performed against a library of random fragments of HIV-1 proviral DNA. For some of the identified cell factors, we have generated and characterized loss of affinity mutants of integrase, which, when combined with viral functional assays, validated the involvement of human lens epithelium-derived growth factor (LEDGF/p75) in the integration step of the HIV-1 replication cycle. All tolled, our studies identified LEDGF/p75, Transportin-SR2 (TNPO3), von Hippel-Lindau binding protein 1 (VBP1), and sucrose non-fermenting 5 (SNF5) as cellular binding partners of HIV-1 integrase.
Retrovirology | 2007
Alessia Zamborlini; Jacqueline Lehmann-Che; Emmanuel Clave; Marie Lou Giron; Joelle Tobaly-Tapiero; Philippe Roingeard; Stéphane Emiliani; Antoine Toubert; Ali Saïb
Human immunodeficiency virus type 1 (HIV-1) efficiently replicates in dividing and non-dividing cells. However, HIV-1 infection is blocked at an early post-entry step in quiescent CD4+ T cells in vitro. The molecular basis of this restriction is still poorly understood. Here, we show that in quiescent cells, incoming HIV-1 sub-viral complexes concentrate and stably reside at the centrosome for several weeks. Upon cell activation, viral replication resumes leading to viral gene expression. Thus, HIV-1 can persist in quiescent cells as a stable, centrosome-associated, pre-integration intermediate.
Cell Host & Microbe | 2015
Annabelle Gérard; Emmanuel Segeral; Monica Naughtin; Ahmed Abdouni; Bénédicte Charmeteau; Rémi Cheynier; Jean-Christophe Rain; Stéphane Emiliani
The persistence of a latent reservoir containing transcriptionally silent, but replication-competent, integrated provirus is a serious challenge to HIV eradication. HIV integration is under the control of LEDGF/p75, the cellular cofactor of viral integrase. Investigating possible postintegration roles for LEDGF/p75, we find that LEDGF/p75 represses HIV expression in latently infected cells. LEDGF/p75 associated with two proteins involved in the control of gene expression and chromatin structure, Spt6 and Iws1, to form a stable complex. Iws1 plays a role in the establishment of latent infection, whereas Spt6 functions to recruit Iws1 and LEDGF/p75 to the silenced provirus and maintains histone occupancy at the HIV promoter. In latently infected cells, depletion of the complex results in reactivation of HIV expression Altogether, our results indicate that a complex containing LEDGF/p75, Iws1, and Spt6 participates in regulating postintegration steps of HIV latency.