Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephane Evoy is active.

Publication


Featured researches published by Stephane Evoy.


Smart Materials and Structures | 2014

A review of piezoelectric polymers as functional materials for electromechanical transducers

Khaled Sayed Elbadawi Ramadan; Dan Sameoto; Stephane Evoy

Polymer based MEMS and microfluidic devices have the advantages of mechanical flexibility, lower fabrication cost and faster processing over silicon based ones. Also, many polymer materials are considered biocompatible and can be used in biological applications. A valuable class of polymers for microfabricated devices is piezoelectric functional polymers. In addition to the normal advantages of polymers, piezoelectric polymers can be directly used as an active material in different transduction applications. This paper gives an overview of piezoelectric polymers based on their operating principle. This includes three main categories: bulk piezoelectric polymers, piezocomposites and voided charged polymers. State-of-the-art piezopolymers of each category are presented with a focus on fabrication techniques and material properties. A comparison between the different piezoelectric polymers and common inorganic piezoelectric materials (PZT, ZnO, AlN and PMN?PT) is also provided in terms of piezoelectric properties. The use of piezopolymers in different electromechanical devices is also presented. This includes tactile sensors, energy harvesters, acoustic transducers and inertial sensors.


Applied Physics Letters | 1999

Measurement of mechanical resonance and losses in nanometer scale silicon wires

Dustin W. Carr; Stephane Evoy; Lidija Sekaric; Harold G. Craighead; J. M. Parpia

We present data on nanofabricated suspended silicon wires driven at resonance. The wires are electrostatically driven and detected optically. We have observed wires with widths as small as 45 nm and resonant frequencies as high as 380 MHz. We see a strong dependence of the resonant quality factor on the surface to volume ratio.


Nanotechnology | 2006

Metallic NEMS components fabricated from nanocomposite Al–Mo films

Zonghoon Lee; Colin Ophus; L.M. Fischer; Nathan Nelson-Fitzpatrick; K. Westra; Stephane Evoy; Velimir Radmilovic; U Dahmen; David Mitlin

We have fabricated fully released nano-electro-mechanical system (NEMS) cantilevers of various geometries from metallic alloy nanocomposite films. At thicknesses of 4.3 and 20.0 nm, these are the thinnest released metal cantilevers reported in the literature to date. Such device dimensions are very difficult to achieve using conventional metal films. We were able to overcome this limitation by using room-temperature co-sputtering to synthesize nanocomposite alloy films of Al–Mo. A systematic investigation of microstructure and properties as a function of Mo content resulted in an optimum film composition of Al–32 at.%Mo with a unique microstructure comprising a dense distribution of nano-scale Mo crystallites dispersed in an amorphous Al-rich matrix. These films were found to exhibit unusually high nanoindentation hardness and a very significant reduction in roughness compared with pure Al, while maintaining resistivity in the metallic range. A single-anchored cantilever 5 µm long, 800 nm wide and 20 nm thick showed a resonance frequency of 608 kHz, yielding a Youngs modulus of 112 GPa, in good agreement with a reduced modulus of 138 GPa measured by nanoindentation.


Journal of Applied Physics | 1999

Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators

Stephane Evoy; Dustin W. Carr; Lidija Sekaric; A. Olkhovets; J. M. Parpia; Harold G. Craighead

We report the fabrication and characterization of paddle oscillators featuring nanometer-scale supporting rods. The devices show two resonances in the 1–10 MHz range, which we attribute to the translational and torsional modes of motion. While the frequency response of the translational motion shows evidence of nonlinear behavior, the torsional response remains symmetric throughout the range of excitation. We present a model for the electrostatic excitation of the two modes. Torsional motion is induced via asymmetries of the system, and amplified by a modulation of the effective torsional constant. The model of the translational motion predicts a nonlinear behavior for displacements as small as 15 nm. Analysis of both modes of motion consistently suggests structures softer than expected from bulk silicon. Quality factors approaching 103 are measured.


Sensors | 2013

Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection

Amit Singh; Somayyeh Poshtiban; Stephane Evoy

Foodborne diseases are a major health concern that can have severe impact on society and can add tremendous financial burden to our health care systems. Rapid early detection of food contamination is therefore relevant for the containment of food-borne pathogens. Conventional pathogen detection methods, such as microbiological and biochemical identification are time-consuming and laborious, while immunological or nucleic acid-based techniques require extensive sample preparation and are not amenable to miniaturization for on-site detection. Biosensors have shown tremendous promise to overcome these limitations and are being aggressively studied to provide rapid, reliable and sensitive detection platforms for such applications. Novel biological recognition elements are studied to improve the selectivity and facilitate integration on the transduction platform for sensitive detection. Bacteriophages are one such unique biological entity that show excellent host selectivity and have been actively used as recognition probes for pathogen detection. This review summarizes the extensive literature search on the application of bacteriophages (and recently their receptor binding proteins) as probes for sensitive and selective detection of foodborne pathogens, and critically outlines their advantages and disadvantages over other recognition elements.


Applied Physics Letters | 2000

Parametric amplification in a torsional microresonator

Dustin W. Carr; Stephane Evoy; Lidija Sekaric; Harold G. Craighead; J. M. Parpia

We observe parametric amplification in a torsional micron-scale mechanical resonator. An applied voltage is used to make a dynamic change to the torsional spring constant. Oscillating the spring constant at twice the resonant frequency results in a phase dependent amplification of the resonant motion. Our results agree well with the theory of parametric amplification. By taking swept frequency measurements, we observe interesting structure in the resonant response curves.


Biosensors and Bioelectronics | 2009

Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens.

Amit Singh; Nick Glass; M. Tolba; L. Brovko; M. Griffiths; Stephane Evoy

Techniques for the chemical attachment of wild-type bacteriophages onto gold surfaces and the subsequent capture of their host bacteria have been developed. The surfaces were modified with sugars (dextrose and sucrose) as well as amino acids (histidine and cysteine) to facilitate such attachment. Non-specific attachment was prevented by using bovine serum albumin as blocking layer. Surfaces modified with cysteine (and cysteamine) followed by activation using 2% gluteraldehyde resulted in an attachment density of 18+/-0.15 phages/microm(2). This represented a 37-fold improvement compared to simply applying physisorption. Subsequently, the phage immobilized surfaces were exposed to the host E. coli EC12 bacteria and capture was confirmed by fluorescence microscopy. We obtained a bacterial capture density of 11.9+/-0.2/100 microm(2), a 9-fold improvement when compared to those on physically adsorbed phages. The specificity of recognition was confirmed by exposing similar surfaces to three strains of non-host bacteria. These negative control experiments do not show any bacterial capture. In addition, no capture of the host was observed in the absence of the phages.


Applied and Environmental Microbiology | 2010

Oriented Immobilization of Bacteriophages for Biosensor Applications

M. Tolba; O. Minikh; L.Y. Brovko; Stephane Evoy; Mansel W. Griffiths

ABSTRACT A method was developed for oriented immobilization of bacteriophage T4 through introduction of specific binding ligands into the phage head using a phage display technique. Fusion of the biotin carboxyl carrier protein gene (bccp) or the cellulose binding module gene (cbm) with the small outer capsid protein gene (soc) of T4 resulted in expression of the respective ligand on the phage head. Recombinant bacteriophages were characterized in terms of infectivity. It was shown that both recombinant phages retain their lytic activity and host range. However, phage head modification resulted in a decreased burst size and an increased latent period. The efficiency of bacteriophage immobilization with streptavidin-coated magnetic beads and cellulose-based materials was investigated. It was shown that recombinant bacteriophages form specific and strong bonds with their respective solid support and are able to specifically capture and infect the host bacterium. Thus, the use of immobilized BCCP-T4 bacteriophage for an Escherichia coli B assay using a phage multiplication approach and real-time PCR allowed detection of as few as 800 cells within 2 h.


Biosensors and Bioelectronics | 2010

Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection.

Amit Singh; Sunil K. Arya; Nick Glass; Pejman Hanifi-Moghaddam; Ravendra Naidoo; Christine M. Szymanski; Jamshid Tanha; Stephane Evoy

We report the use of genetically engineered tailspike proteins (TSPs) from the P22 bacteriophage for the sensitive and selective detection of Salmonella enterica serovar Typhimurium. High yields of two mutant TSPs, one with an N-terminal cysteine (N-Cys) and another with a C-terminal cysteine (C-Cys), have been obtained using recombinant protein expression and purification in Escherichia coli. The mutant TSPs did not have the native endorhamnosidase enzymatic activity of intact P22 phage as well as wild type TSPs (wtTSPs). We have used the Cys-tag to immobilize these TSPs onto gold coated surfaces using thiol-chemistry. Our results demonstrate that the N-Cys configuration of TSPs gives a bacterial capture density of 25.87 ± 0.61 bacteria/100 μm(2) while the C-Cys configuration shows a density of 8.57 ± 0.19 bacteria/100 μm(2). This confirms that the appropriate orientation of the TSPs on the surface is important for efficient capture of the host bacteria. The bacterial capture density of the mutant N-Cys TSP was also 6-fold better than that obtained for intact P22 phage as well as wtTSPs. Bovine-serum albumin was used as a protective layer to prevent any non-specific binding of the bacteria onto the gold substrate. The recognition specificity was confirmed using 3 strains of E. coli which showed negligible binding. In addition, the host bacteria did not show any binding in the absence of the TSPs on the surface. We further show a selective real-time analytical detection of Salmonella by N-Cys mTSP-immobilized on gold coated SF-10 glass plates using surface plasmon resonance. The sensitivity of detection was found to be 10(3)cfu/ml of bacteria.


Analyst | 2012

Bacteriophage based probes for pathogen detection

Amit Singh; Denis Arutyunov; Christine M. Szymanski; Stephane Evoy

Rapid and specific detection of pathogenic bacteria is important for the proper treatment, containment and prevention of human, animal and plant diseases. Identifying unique biological probes to achieve a high degree of specificity and minimize false positives has therefore garnered much interest in recent years. Bacteriophages are obligate intracellular parasites that subvert bacterial cell resources for their own multiplication and production of disseminative new virions, which repeat the cycle by binding specifically to the host surface receptors and injecting genetic material into the bacterial cells. The precision of host recognition in phages is imparted by the receptor binding proteins (RBPs) that are often located in the tail-spike or tail fiber protein assemblies of the virions. Phage host recognition specificity has been traditionally exploited for bacterial typing using laborious and time consuming bacterial growth assays. At the same time this feature makes phage virions or RBPs an excellent choice for the development of probes capable of selectively capturing bacteria on solid surfaces with subsequent quick and automatic detection of the binding event. This review focuses on the description of pathogen detection approaches based on immobilized phage virions as well as pure recombinant RBPs. Specific advantages of RBP-based molecular probes are also discussed.

Collaboration


Dive into the Stephane Evoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Luzzi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Dustin W. Carr

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge