Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephane Ferretti is active.

Publication


Featured researches published by Stephane Ferretti.


Journal of Immunology | 2003

IL-17, Produced by Lymphocytes and Neutrophils, Is Necessary for Lipopolysaccharide-Induced Airway Neutrophilia: IL-15 as a Possible Trigger

Stephane Ferretti; Olivier Bonneau; Gerald Dubois; Carol E. Jones; Alexandre Trifilieff

IL-17 is a cytokine implicated in the regulation of inflammation. We investigated the role of this cytokine in neutrophil recruitment using a model of LPS-induced lung inflammation in mice. In the bronchoalveolar lavage, LPS induced a first influx of neutrophils peaking at day 1, followed by a second wave, peaking at day 2. IL-17 levels were increased during the late phase neutrophilia (day 2), and this was concomitant with an increased number of T cells and macrophages, together with an increase of KC and macrophage-inflammatory protein-2 levels in the lung tissue. Intranasal treatment with a neutralizing murine anti-IL-17 Ab inhibited the late phase neutrophilia. In the bronchoalveolar lavage cells, IL-17 mRNA was detected at days 1, 2, and 3 postchallenge, with a strong expression at day 2. This expression was associated with CD4+ and CD8+ cells, but also with neutrophils. When challenged with LPS, despite the absence of T cells, SCID mice also developed a neutrophilic response associated with IL-17 production. In BALB/c mice, IL-15 mRNA, associated mainly with neutrophils, was evidenced 1 day after LPS challenge. In vitro, IL-15 was able to induce IL-17 release from purified spleen CD4+ cells, but not spleen CD8+ or airway neutrophils. We have shown that IL-17, produced mainly by CD4+ cells, but also by neutrophils, plays a role in the mobilization of lung neutrophils following bacterial challenge. In addition, our results suggest that IL-15 could represent a physiological trigger that leads to IL-17 production following bacterial infection.


Nature Medicine | 2015

High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response

Hui Gao; Joshua Korn; Stephane Ferretti; John E. Monahan; Youzhen Wang; Mallika Singh; Chao Zhang; Christian Schnell; Guizhi Yang; Yun Zhang; O Alejandro Balbin; Stéphanie Barbe; Hongbo Cai; Fergal Casey; Susmita Chatterjee; Derek Y. Chiang; Shannon Chuai; Shawn M Cogan; Scott D Collins; Ernesta Dammassa; Nicolas Ebel; Millicent Embry; John Green; Audrey Kauffmann; Colleen Kowal; Rebecca J. Leary; Joseph Lehar; Ying Liang; Alice Loo; Edward Lorenzana

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Molecular Cancer Therapeutics | 2014

Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials.

Christine Fritsch; Alan Huang; Christian Chatenay-Rivauday; Christian Schnell; Anupama Reddy; Manway Liu; Audrey Kauffmann; Daniel Guthy; Dirk Erdmann; Alain De Pover; Pascal Furet; Hui Gao; Stephane Ferretti; Youzhen Wang; Joerg Trappe; Saskia M. Brachmann; Sauveur-Michel Maira; Christopher J. Wilson; Markus Boehm; Carlos Garcia-Echeverria; Patrick Chène; Marion Wiesmann; Robert Cozens; Joseph Lehar; Robert Schlegel; Giorgio Caravatti; Francesco Hofmann; William R. Sellers

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials. Mol Cancer Ther; 13(5); 1117–29. ©2014 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2013

M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth

Marta Cortes-Cros; Christelle Hemmerlin; Stephane Ferretti; Juan Zhang; John S. Gounarides; Hong Yin; Alban Muller; Anne Haberkorn; Patrick Chène; William R. Sellers; Francesco Hofmann

Many cancer cells have increased rates of aerobic glycolysis, a phenomenon termed the Warburg effect. In addition, in tumors there is a predominance of expression of the M2 isoform of pyruvate kinase (PKM2). M2 expression was previously shown to be necessary for aerobic glycolysis and to provide a growth advantage to tumors. We report that knockdown of pyruvate kinase in tumor cells leads to a decrease in the levels of pyruvate kinase activity and an increase in the pyruvate kinase substrate phosphoenolpyruvate. However, lactate production from glucose, although reduced, was not fully inhibited. Furthermore, we are unique in reporting increased serine and glycine biosynthesis from both glucose and glutamine following pyruvate kinase knockdown. Although pyruvate kinase knockdown results in modest impairment of proliferation in vitro, in vivo growth of established xenograft tumors is unaffected by PKM2 absence. Our findings indicate that PKM2 is dispensable for tumor maintenance and growth in vivo, suggesting that other metabolic pathways bypass its function.


Clinical Cancer Research | 2005

Patupilone Induced Vascular Disruption in Orthotopic Rodent Tumor Models Detected by Magnetic Resonance Imaging and Interstitial Fluid Pressure

Stephane Ferretti; Peter R. Allegrini; Terence O'reilly; Christian Schnell; Michael Stumm; Markus Wartmann; Jeanette Marjorie Wood; Paul M.J. McSheehy

Purpose: Evaluation of vascular disruptive activity in orthotopic models as potential surrogate biomarkers of tumor response to the microtubule-stabilizing agent patupilone. Experimental Design: Mice bearing metastatic B16/BL6 melanoma and rats bearing mammary BN472 tumors received vehicle or efficacious patupilone doses (4 and 0.8-1.5 mg/kg i.v., respectively). Tumor vascularity assessment by dynamic contrast-enhanced or dynamic susceptibility contrast magnetic resonance imaging and interstitial fluid pressure (IFP) occurred at baseline, 2 days (mice and rats), and 6 days (rats) after treatment and were compared with histologic measurements and correlated with tumor response. Results: In B16/BL6 metastases, patupilone (4 mg/kg) induced a 21 ± 5% decrease (P < 0.001) in tumor blood volume and a 32 ± 15% decrease (P = 0.02) in IFP after 2 days and reduced tumor growth and vessel density (>42%) after 2 weeks (P ≤ 0.014). Patupilone dose-dependently inhibited BN472 tumor growth (day 6) and reduced IFP on days 2 and 6 (−21% to −70%), and the percentage change in IFP correlated (P < 0.01) with the change in tumor volume. In both models, histology and vascular casts confirmed decreases in tumor blood volume. One patupilone (0.8 mg/kg) administration decreased (P < 0.01) tumor IFP (54 ± 4%), tumor blood volume (50 ± 6%), and vessel diameter (40 ± 11%) by day 6 but not the apparent diffusion coefficient, whereas histology showed that apoptosis was increased 2.4-fold and necrosis was unchanged. Apoptosis correlated negatively (P < 0.001) with IFP, tumor blood volume, and tumor volume, whereas tumor blood volume and IFP were correlated positively (P = 0.0005). Conclusions: Vascular disruptive effects of patupilone were detected in situ using dynamic contrast-enhanced or dynamic susceptibility contrast magnetic resonance imaging and IFP. Changes in IFP preceded and correlated with tumor response, suggesting that IFP may be a surrogate biomarker for patupilone efficacy.


Journal of Medicinal Chemistry | 2015

Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors

Philipp Holzer; Keiichi Masuya; Pascal Furet; Joerg Kallen; Therese Valat-Stachyra; Stephane Ferretti; Joerg Berghausen; Michèle Bouisset-Leonard; Nicole Buschmann; Carole Pissot-Soldermann; Caroline Rynn; Stephan Ruetz; Stefan Stutz; Patrick Chène; Sébastien Jeay; François Gessier

As a result of our efforts to discover novel p53:MDM2 protein-protein interaction inhibitors useful for treating cancer, the potent and selective MDM2 inhibitor NVP-CGM097 (1) with an excellent in vivo profile was selected as a clinical candidate and is currently in phase 1 clinical development. This article provides an overview of the discovery of this new clinical p53:MDM2 inhibitor. The following aspects are addressed: mechanism of action, scientific rationale, binding mode, medicinal chemistry, pharmacokinetic and pharmacodynamic properties, and in vivo pharmacology/toxicology in preclinical species.


eLife | 2015

A distinct p53 target gene set predicts for response to the selective p53–HDM2 inhibitor NVP-CGM097

Sébastien Jeay; Swann Gaulis; Stephane Ferretti; Hans Bitter; Moriko Ito; Thérèse Valat; Masato Murakami; Stephan Ruetz; Daniel Guthy; Caroline Rynn; Michael Rugaard Jensen; Marion Wiesmann; Joerg Kallen; Pascal Furet; François Gessier; Philipp Holzer; Keiichi Masuya; Jens Würthner; Ensar Halilovic; Francesco Hofmann; William R. Sellers; Diana Graus Porta

Biomarkers for patient selection are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. In this study, we report the discovery of a novel patient selection strategy for the p53–HDM2 inhibitor NVP-CGM097, currently under evaluation in clinical trials. By intersecting high-throughput cell line sensitivity data with genomic data, we have identified a gene expression signature consisting of 13 up-regulated genes that predicts for sensitivity to NVP-CGM097 in both cell lines and in patient-derived tumor xenograft models. Interestingly, these 13 genes are known p53 downstream target genes, suggesting that the identified gene signature reflects the presence of at least a partially activated p53 pathway in NVP-CGM097-sensitive tumors. Together, our findings provide evidence for the use of this newly identified predictive gene signature to refine the selection of patients with wild-type p53 tumors and increase the likelihood of response to treatment with p53–HDM2 inhibitors, such as NVP-CGM097. DOI: http://dx.doi.org/10.7554/eLife.06498.001


Clinical Cancer Research | 2010

Quantified tumor t1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability.

Paul M.J. McSheehy; Claudia Weidensteiner; Catherine Cannet; Stephane Ferretti; Didier Laurent; Stephan Ruetz; Michael Stumm; Peter R. Allegrini

Purpose: Identification of a generic response biomarker by comparison of chemotherapeutics with different action mechanisms on several noninvasive biomarkers in experimental tumor models. Experimental Design: The spin-lattice relaxation time of water protons (T1) was quantified using an inversion recovery-TrueFISP magnetic resonance imaging method in eight different experimental tumor models before and after treatment at several different time points with five different chemotherapeutics. Effects on T1 were compared with other minimally invasive biomarkers including vascular parameters, apparent diffusion coefficient, and interstitial fluid pressure, and were correlated with efficacy at the endpoint and histologic parameters. Results: In all cases, successful chemotherapy significantly lowered tumor T1 compared with vehicle and the fractional change in T1 (ΔT1) correlated with the eventual change in tumor size (range: r2 = 0.21, P < 0.05 to r2 = 0.73, P < 0.0001), except for models specifically resistant to that drug. In RIF-1 tumors, interstitial fluid pressure was decreased, but apparent diffusion coefficient and permeability increased in response to the microtubule stabilizer patupilone and 5-fluorouracil. Although ΔT1 was small (maximum of −20%), the variability was very low (5%) compared with other magnetic resonance imaging methods (24-48%). Analyses ex vivo showed unchanged necrosis, increased apoptosis, and decreased %Ki67 and total choline, but only Ki67 and choline correlated with ΔT1. Correlation of Ki67 and ΔT1 were observed in other models using patupilone, paclitaxel, a VEGF-R inhibitor, and the mammalian target of rapamycin inhibitor everolimus. Conclusions: These results suggest that a decrease in tumor T1 reflects hypocellularity and is a generic marker of response. The speed and robustness of the method should facilitate its use in clinical trials. Clin Cancer Res; 16(1); 212–25


Naunyn-schmiedebergs Archives of Pharmacology | 2003

Differential DNA synthesis in response to activation of protease-activated receptors on cultured guinea-pig tracheal smooth muscle cells.

Randolph Corteling; Olivier Bonneau; Stephane Ferretti; Mireille Ferretti; Alexandre Trifilieff

Both thrombin and tryptase have been shown to induce smooth muscle cell proliferation in vitro. We have used cultured primary guinea-pig tracheal smooth muscle in order to define pharmacologically the receptors involved in this effect. Tryptase, a protease-activated receptor (PAR)-2 agonist, induced DNA synthesis up to the second passage of the cells, thereafter the response waned. In contrast, thrombin, a PAR-1 agonist, and the PAR-1 activating peptide (SFLLRN) induced DNA synthesis starting from the third passage only. Thrombin and tryptase responses were dose-dependently inhibited by leupeptin. The selective PAR-2 activating peptide (SLIGRL-NH2) was unable to induce DNA synthesis in cells from passages 1 to 6. In agreement with the functional data, mRNA expression for PAR-1 was increased in cells in later passages. In contradiction with the functional data, however, equal mRNA expression for PAR-2 was found in all passages. These results suggest that thrombin induces guinea-pig tracheal smooth muscle DNA synthesis through activation of PAR-1. However, the differential effect of tryptase and SLIGRL-NH2 suggests that tryptase might exert some of its effect via a non-PAR-2 receptor.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf−/− mouse model

Emilie Chapeau; agnieszka Gembarska; Eric Y. Durand; Emeline Mandon; Claire Estadieu; Vincent Romanet; Marion Wiesmann; Ralph Tiedt; Joseph Lehar; Antoine de Weck; Roland Rad; Louise Barys; Sébastien Jeay; Stephane Ferretti; Audrey Kauffmann; Esther Sutter; Armelle Grevot; Pierre Moulin; Masato Murakami; William R. Sellers; Francesco Hofmann; Michael Rugaard Jensen

Significance Emergence of resistance to targeted therapy constitutes a limitation to long-term clinical benefits in many instances. To anticipate potential mechanisms of resistance to double minute 2 protein (MDM2) inhibitors, we performed a piggyBac insertional mutagenesis screen in a cohort of allografts with an underlying CDKN2A deletion, in the presence and absence of the MDM2 inhibitor HDM201. Among the most frequent events conferring resistance, we found several mechanisms converging on direct or indirect loss-of-function inactivation of tumor protein 53 (TP53), as well as activation of the antiapoptotic B-cell lymphoma-extra large (Bcl-xL) gene. Importantly, our findings were confirmed in patient-derived xenograft models, underlining the benefit of large-scale in vivo forward genetic screening to identify potential resistance mechanisms to targeted therapeutics. Inhibitors of double minute 2 protein (MDM2)–tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf−/− mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.

Collaboration


Dive into the Stephane Ferretti's collaboration.

Researchain Logo
Decentralizing Knowledge