Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphane Fourcade is active.

Publication


Featured researches published by Stéphane Fourcade.


Human Molecular Genetics | 2008

Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy.

Stéphane Fourcade; Jone López-Erauskin; Jorge Galino; Carine Duval; Alba Naudí; Mariona Jové; Francesc Villarroya; Isidre Ferrer; Reinald Pamplona; Manuel Portero-Otin; Aurora Pujol

X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disorder, characterized by progressive cerebral demyelination cerebral childhood adrenoleukodystrophy (CCALD) or spinal cord neurodegeneration (adrenomyeloneuropathy, AMN), adrenal insufficiency and accumulation of very long-chain fatty acids (VLCFA) in tissues. The disease is caused by mutations in the ABCD1 gene, which encodes a peroxisomal transporter that plays a role in the import of VLCFA or VLCFA-CoA into peroxisomes. The Abcd1 knockout mice develop a spinal cord disease that mimics AMN in adult patients, with late onset at 20 months of age. The mechanisms underlying cerebral demyelination or axonal degeneration in spinal cord are unknown. Here, we present evidence by gas chromatography/mass spectrometry that malonaldehyde-lysine, a consequence of lipoxidative damage to proteins, accumulates in the spinal cord of Abcd1 knockout mice as early as 3.5 months of age. At 12 months, Abcd1- mice accumulate additional proteins modified by oxidative damage arising from metal-catalyzed oxidation and glycoxidation/lipoxidation. While we show that VLCFA excess activates enzymatic antioxidant defenses at the protein expression levels, both in neural tissue, in ex vivo organotypic spinal cord slices from Abcd1- mice, and in human ALD fibroblasts, we also demonstrate that the loss of Abcd1 gene function hampers oxidative stress homeostasis. We find that the alpha-tocopherol analog Trolox is able to reverse oxidative lesions in vitro, thus providing therapeutic hope. These results pave the way for the identification of therapeutic targets that could reverse the deregulated response to oxidative stress in X-ALD.


Annals of Neurology | 2011

Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy†

Jone López-Erauskin; Stéphane Fourcade; Jorge Galino; Montserrat Ruiz; Agatha Schlüter; Alba Naudí; Mariona Jové; Manuel Portero-Otin; Reinald Pamplona; Isidre Ferrer; Aurora Pujol

Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X‐adrenoleukodystrophy (X‐ALD).


American Journal of Physiology-endocrinology and Metabolism | 2009

A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis.

Stéphane Fourcade; Montserrat Ruiz; Carme Camps; Agatha Schlüter; Sander M. Houten; Petra A. W. Mooyer; Teresa Pàmpols; Georges Dacremont; Marisa Giros; Aurora Pujol

Peroxisomes are essential organelles exerting key functions in fatty acid metabolism such as the degradation of very long-chain fatty acids (VLCFAs). VLCFAs accumulate in X-adrenoleukodystrophy (X-ALD), a disease caused by deficiency of the Abcd1 peroxisomal transporter. Its closest homologue, Abcd2, exhibits a high degree of functional redundancy on the catabolism of VLCFA, being able to prevent X-ALD-related neurodegeneration in the mouse. In the search for specific roles of Abcd2, we screened fatty acid profiles in organs and primary neurons of mutant knockout mice lacking Abcd2 in basal conditions and under dietary challenges. Our results indicate that ABCD2 plays a role in the degradation of long-chain saturated and omega9-monounsaturated fatty acids and in the synthesis of docosahexanoic acid (DHA). Also, we demonstrated a defective VLCFA beta-oxidation ex vivo in brain slices of Abcd1 and Abcd2 knockouts, using radiolabeled hexacosanoic acid and the precursor of DHA as substrates. As DHA levels are inversely correlated with the incidence of Alzheimers and several degenerative conditions, we suggest that ABCD2 may act as modulator/modifier gene and therapeutic target in rare and common human disorders.


Human Molecular Genetics | 2010

Valproic acid induces antioxidant effects in X-linked Adrenoleukodystrophy

Stéphane Fourcade; Montserrat Ruiz; Cristina Guilera; Eric Hahnen; Lars Brichta; Alba Naudí; Manuel Portero-Otin; Georges Dacremont; Nathalie Cartier; Jean-Louis Mandel; Brunhilde Wirth; Reinald Pamplona; Patrick Aubourg; Aurora Pujol

X-linked adrenoleukodystrophy (X-ALD) is a fatal, axonal demyelinating, neurometabolic disease. It results from the functional loss of a member of the peroxisomal ATP-binding cassette transporter subfamily D (ABCD1), which is involved in the metabolism of very long-chain fatty acids (VLCFA). Oxidative damage of proteins caused by excess of the hexacosanoic acid, the most prevalent VLCFA accumulating in X-ALD, is an early event in the neurodegenerative cascade. We demonstrate here that valproic acid (VPA), a widely used anti-epileptic drug with histone deacetylase inhibitor properties, induced the expression of the functionally overlapping ABCD2 peroxisomal transporter. VPA corrected the oxidative damage and decreased the levels of monounsaturated VLCFA (C26:1 n-9), but not saturated VLCFA. Overexpression of ABCD2 alone prevented oxidative lesions to proteins in a mouse model of X-ALD. A 6-month pilot trial of VPA in X-ALD patients resulted in reversion of the oxidative damage of proteins in peripheral blood mononuclear cells. Thus, we propose VPA as a promising novel therapeutic approach that warrants further clinical investigation in X-ALD.


Nucleic Acids Research | 2007

PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

Agatha Schlüter; Stéphane Fourcade; Enric Domènech-Estévez; Toni Gabaldón; Jaime Huerta-Cepas; Guillaume Berthommier; Raymond Ripp; Ronald J. A. Wanders; Olivier Poch; Aurora Pujol

Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle.


Antioxidants & Redox Signaling | 2011

Oxidative Damage Compromises Energy Metabolism in the Axonal Degeneration Mouse Model of X-Adrenoleukodystrophy

Jorge Galino; Montserrat Ruiz; Stéphane Fourcade; Agatha Schlüter; Jone López-Erauskin; Cristina Guilera; Mariona Jové; Alba Naudí; Elena García-Arumí; Antoni L. Andreu; Anatoly A. Starkov; Reinald Pamplona; Isidre Ferrer; Manuel Portero-Otin; Aurora Pujol

AIMS Chronic metabolic impairment and oxidative stress are associated with the pathogenesis of axonal dysfunction in a growing number of neurodegenerative conditions. To investigate the intertwining of both noxious factors, we have chosen the mouse model of adrenoleukodystrophy (X-ALD), which exhibits axonal degeneration in spinal cords and motor disability. The disease is caused by loss of function of the ABCD1 transporter, involved in the import and degradation of very long-chain fatty acids (VLCFA) in peroxisomes. Oxidative stress due to VLCFA excess appears early in the neurodegenerative cascade. RESULTS In this study, we demonstrate by redox proteomics that oxidative damage to proteins specifically affects five key enzymes of glycolysis and TCA (Tricarboxylic acid) cycle in spinal cords of Abcd1(-) mice and pyruvate kinase in human X-ALD fibroblasts. We also show that NADH and ATP levels are significantly diminished in these samples, together with decrease of pyruvate kinase activities and GSH levels, and increase of NADPH. INNOVATION Treating Abcd1(-) mice with the antioxidants N-acetylcysteine and α-lipoic acid (LA) prevents protein oxidation; preserves NADH, NADPH, ATP, and GSH levels; and normalizes pyruvate kinase activity, which implies that oxidative stress provoked by VLCFA results in bioenergetic dysfunction, at a presymptomatic stage. CONCLUSION Our results provide mechanistic insight into the beneficial effects of antioxidants and enhance the rationale for translation into clinical trials for X-adrenoleukodystrophy.


Human Molecular Genetics | 2012

Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy

Agatha Schlüter; Lluís Espinosa; Stéphane Fourcade; Jorge Galino; Eva López; Ekaterina V. Ilieva; Laia Morató; Muriel Asheuer; Ted Cook; Alistair McLaren; Juliet Reid; Fiona Kelly; Stewart Bates; Patrick Aubourg; Elena Galea; Aurora Pujol

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1− null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Brain | 2012

Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy

Jone López-Erauskin; Jorge Galino; Patrizia Bianchi; Stéphane Fourcade; Antoni L. Andreu; Isidre Ferrer; Cristina Muñoz-Pinedo; Aurora Pujol

A common process associated with oxidative stress and severe mitochondrial impairment is the opening of the mitochondrial permeability transition pore, as described in many neurodegenerative diseases. Thus, inhibition of mitochondrial permeability transition pore opening represents a potential target for inhibiting mitochondrial-driven cell death. Among the mitochondrial permeability transition pore components, cyclophilin D is the most studied and has been found increased under pathological conditions. Here, we have used in vitro and in vivo models of X-linked adrenoleukodystrophy to investigate the relationship between the mitochondrial permeability transition pore opening and redox homeostasis. X-linked adrenoleukodystrophy is a neurodegenerative condition caused by loss of function of the peroxisomal ABCD1 transporter, in which oxidative stress plays a pivotal role. In this study, we provide evidence of impaired mitochondrial metabolism in a peroxisomal disease, as fibroblasts in patients with X-linked adrenoleukodystrophy cannot survive when forced to rely on mitochondrial energy production, i.e. on incubation in galactose. Oxidative stress induced under galactose conditions leads to mitochondrial damage in the form of mitochondrial inner membrane potential dissipation, ATP drop and necrotic cell death, together with increased levels of oxidative modifications in cyclophilin D protein. Moreover, we show increased expression levels of cyclophilin D in the affected zones of brains in patients with adrenomyeloneuropathy, in spinal cord of a mouse model of X-linked adrenoleukodystrophy (Abcd1-null mice) and in fibroblasts from patients with X-linked adrenoleukodystrophy. Notably, treatment with antioxidants rescues mitochondrial damage markers in fibroblasts from patients with X-linked adrenoleukodystrophy, including cyclophilin D oxidative modifications, and reverses cyclophilin D induction in vitro and in vivo. These findings provide mechanistic insight into the beneficial effects of antioxidants in neurodegenerative and non-neurodegenerative cyclophilin D-dependent disorders.


Brain | 2013

Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy

Laia Morató; Jorge Galino; Montserrat Ruiz; Noel Y. Calingasan; Anatoly A. Starkov; Magali Dumont; Alba Naudí; Juan José Martínez; Patrick Aubourg; Manuel Portero-Otin; Reinald Pamplona; Elena Galea; M. Flint Beal; Isidre Ferrer; Stéphane Fourcade; Aurora Pujol

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Endocrinology | 2008

Steroid Hormones Control Circadian Elovl3 Expression in Mouse Liver

Annelie Brolinson; Stéphane Fourcade; Andreas Jakobsson; Aurora Pujol; Anders Jacobsson

The Elovl3 gene belongs to the Elovl gene family, which encodes for enzymes involved in the elongation of very long chain fatty acids. The recognized role for the enzyme is to control the elongation of saturated and monounsaturated fatty acids up to 24 carbons in length. Elovl3 was originally identified as a highly expressed gene in brown adipose tissue on cold exposure. Here we show that hepatic Elovl3 mRNA expression follows a distinct diurnal rhythm exclusively in mature male mice, with a sharp increase early in the morning Zeitgeber time (ZT) 20, peaks around ZT2, and is back to basal level at the end of the light period at ZT10. In female mice and sexually immature male mice, the Elovl3 expression was constantly low. Fasting and refeeding mice with chow or high-fat diet did not alter the Elovl3 mRNA levels. However, animals that were exclusively fed during the day for 9 d displayed an inverted expression profile. In addition, we show that Elovl3 expression is transcriptionally controlled and significantly induced by the exposure of the synthetic glucocorticoid dexamethasone. Taken together, these data suggest that Elovl3 expression in mouse liver is under strict diurnal control by circulating steroid hormones such as glucocorticoids and androgens. Finally, Elovl3 expression was found to be elevated in peroxisomal transporter ATP-binding cassette, subfamily D(ALD), member 2 ablated mice and suppressed in ATP-binding cassette subfamily D(ALD) member 2 overexpressing mice, implying a tight cross talk between very long chain fatty acid synthesis and peroxisomal fatty acid oxidation.

Collaboration


Dive into the Stéphane Fourcade's collaboration.

Top Co-Authors

Avatar

Aurora Pujol

Catalan Institution for Research and Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Galino

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge