Stephane Houel
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephane Houel.
Genes & Development | 2012
Dongmei Wang; Zhaojie Zhang; Evan O'Loughlin; Thomas H. Lee; Stephane Houel; Dónal O'Carroll; Alexander Tarakhovsky; Natalie G. Ahn; Rui Yi
Argonaute proteins (Ago1-4) are essential components of the microRNA-induced silencing complex and play important roles in both microRNA biogenesis and function. Although Ago2 is the only one with the slicer activity, it is not clear whether the slicer activity is a universally critical determinant for Ago2s function in mammals. Furthermore, functional specificities associated with different Argonautes remain elusive. Here we report that microRNAs are randomly sorted to individual Argonautes in mammals, independent of the slicer activity. When both Ago1 and Ago2, but not either Ago1 or Ago2 alone, are ablated in the skin, the global expression of microRNAs is significantly compromised and it causes severe defects in skin morphogenesis. Surprisingly, Ago3 is able to load microRNAs efficiently in the absence of Ago1 and Ago2, despite a significant loss of global microRNA expression. Quantitative analyses reveal that Ago2 interacts with a majority of microRNAs (60%) in the skin, compared with Ago1 (30%) and Ago3 (<10%). This distribution is highly correlated with the abundance of each Argonaute, as quantified by shotgun proteomics. The quantitative correlation between Argonautes and their associated microRNAs is conserved in human cells. Finally, we measure the absolute expression of Argonaute proteins and determine that their copy number is ~1.4 × 10(5) to 1.7 × 10(5) molecules per cell. Together, our results reveal a quantitative picture for microRNA activity in mammals.
Molecular Cell | 2009
William M. Old; John B. Shabb; Stephane Houel; Hong Wang; Kasey L. Couts; Chia-Yu Yen; Elizabeth S. Litman; Carrie H. Croy; Karen Meyer-Arendt; Jose G. Miranda; Robert Brown; Eric S. Witze; Rebecca E. Schweppe; Katheryn A. Resing; Natalie G. Ahn
Melanoma and other cancers harbor oncogenic mutations in the protein kinase B-Raf, which leads to constitutive activation and dysregulation of MAP kinase signaling. In order to elucidate molecular determinants responsible for B-Raf control of cancer phenotypes, we present a method for phosphoprotein profiling, using negative ionization mass spectrometry to detect phosphopeptides based on their fragment ion signature caused by release of PO(3)(-). The method provides an alternative strategy for phosphoproteomics, circumventing affinity enrichment of phosphopeptides and isotopic labeling of samples. Ninety phosphorylation events were regulated by oncogenic B-Raf signaling, based on their responses to treating melanoma cells with MKK1/2 inhibitor. Regulated phosphoproteins included known signaling effectors and cytoskeletal regulators. We investigated MINERVA/FAM129B, a target belonging to a protein family with unknown category and function, and established the importance of this protein and its MAP kinase-dependent phosphorylation in controlling melanoma cell invasion into three-dimensional collagen matrix.
Developmental Cell | 2013
Eric S. Witze; Mary Katherine Connacher; Stephane Houel; Michael P. Schwartz; Mary K. Morphew; Leah Reid; David B. Sacks; Kristi S. Anseth; Natalie G. Ahn
Wnt5a directs the assembly of the Wnt-receptor-actin-myosin-polarity (WRAMP) structure, which integrates cell-adhesion receptors with F-actin and myosin to form a microfilament array associated with multivesicular bodies (MVBs). The WRAMP structure is polarized to the cell posterior, where it directs tail-end membrane retraction, driving forward translocation of the cell body. Here we define constituents of the WRAMP proteome, including regulators of microfilament and microtubule dynamics, protein interactions, and enzymatic activity. IQGAP1, a scaffold for F-actin nucleation and crosslinking, is necessary for WRAMP structure formation, potentially bridging microfilaments and MVBs. Vesicle coat proteins, including coatomer-I subunits, localize to and are required for the WRAMP structure. Electron microscopy and live imaging demonstrate movement of the ER to the WRAMP structure and plasma membrane, followed by elevation of intracellular Ca2+. Thus, Wnt5a controls directional movement by recruiting cortical ER to mobilize a rear-directed, localized Ca2+ signal, activating actomyosin contraction and adhesion disassembly for membrane retraction.
Molecular & Cellular Proteomics | 2009
Chia-Yu Yen; Karen Meyer-Arendt; Brian Eichelberger; Shaojun Sun; Stephane Houel; William M. Old; Rob Knight; Natalie G. Ahn; Lawrence Hunter; Katheryn A. Resing
Identifying peptides from mass spectrometric fragmentation data (MS/MS spectra) using search strategies that map protein sequences to spectra is computationally expensive. An alternative strategy uses direct spectrum-to-spectrum matching against a reference library of previously observed MS/MS that has the advantage of evaluating matches using fragment ion intensities and other ion types than the simple set normally used. However, this approach is limited by the small sizes of the available peptide MS/MS libraries and the inability to evaluate the rate of false assignments. In this study, we observed good performance of simulated spectra generated by the kinetic model implemented in MassAnalyzer (Zhang, Z. (2004) Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76, 3908–3922; Zhang, Z. (2005) Prediction of low-energy collision-induced dissociation spectra of peptides with three or more charges. Anal. Chem. 77, 6364–6373) as a substitute for the reference libraries used by the spectrum-to-spectrum search programs X!Hunter and BiblioSpec and similar results in comparison with the spectrum-to-sequence program Mascot. We also demonstrate the use of simulated spectra for searching against decoy sequences to estimate false discovery rates. Although we found lower score discrimination with spectrum-to-spectrum searches than with Mascot, particularly for higher charge forms, comparable peptide assignments with low false discovery rate were achieved by examining consensus between X!Hunter and Mascot, filtering results by mass accuracy, and ignoring score thresholds. Protein identification results are comparable to those achieved when evaluating consensus between Sequest and Mascot. Run times with large scale data sets using X!Hunter with the simulated spectral library are 7 times faster than Mascot and 80 times faster than Sequest with the human International Protein Index (IPI) database. We conclude that simulated spectral libraries greatly expand the search space available for spectrum-to-spectrum searching while enabling principled analyses and that the approach can be used in consensus strategies for large scale studies while reducing search times.
Molecular & Cellular Proteomics | 2011
Chia-Yu Yen; Stephane Houel; Natalie G. Ahn; William M. Old
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies.
Journal of Proteome Research | 2011
Karen Meyer-Arendt; William M. Old; Stephane Houel; Kutralanathan Renganathan; Brian Eichelberger; Katheryn A. Resing; Natalie G. Ahn
When analyzing proteins in complex samples using tandem mass spectrometry of peptides generated by proteolysis, the inference of proteins can be ambiguous, even with well-validated peptides. Unresolved questions include whether to show all possible proteins vs a minimal list, what to do when proteins are inferred ambiguously, and how to quantify peptides that bridge multiple proteins, each with distinguishing evidence. Here we describe IsoformResolver, a peptide-centric protein inference algorithm that clusters proteins in two ways, one based on peptides experimentally identified from MS/MS spectra, and the other based on peptides derived from an in silico digest of the protein database. MS/MS-derived protein groups report minimal list proteins in the context of all possible proteins, without redundantly listing peptides. In silico-derived protein groups pull together functionally related proteins, providing stable identifiers. The peptide-centric grouping strategy used by IsoformResolver allows proteins to be displayed together when they share peptides in common, providing a comprehensive yet concise way to organize protein profiles. It also summarizes information on spectral counts and is especially useful for comparing results from multiple LC–MS/MS experiments. Finally, we examine the relatedness of proteins within IsoformResolver groups and compare its performance to other protein inference software.
Molecular & Cellular Proteomics | 2015
Scott A. Stuart; Stephane Houel; Thomas H. Lee; Nan Wang; William M. Old; Natalie G. Ahn
Inhibitors of oncogenic B-RAFV600E and MKK1/2 have yielded remarkable responses in B-RAFV600E-positive melanoma patients. However, the efficacy of these inhibitors is limited by the inevitable onset of resistance. Despite the fact that these inhibitors target the same pathway, combination treatment with B-RAFV600E and MKK1/2 inhibitors has been shown to improve both response rates and progression-free survival in B-RAFV600E melanoma patients. To provide insight into the molecular nature of the combinatorial response, we used quantitative mass spectrometry to characterize the inhibitor-dependent phosphoproteome of human melanoma cells treated with the B-RAFV600E inhibitor PLX4032 (vemurafenib) or the MKK1/2 inhibitor AZD6244 (selumetinib). In three replicate experiments, we quantified changes at a total of 23,986 phosphosites on 4784 proteins. This included 1317 phosphosites that reproducibly decreased in response to at least one inhibitor. Phosphosites that responded to both inhibitors grouped into networks that included the nuclear pore complex, growth factor signaling, and transcriptional regulators. Although the majority of phosphosites were responsive to both inhibitors, we identified 16 sites that decreased only in response to PLX4032, suggesting rare instances where oncogenic B-RAF signaling occurs in an MKK1/2-independent manner. Only two phosphosites were identified that appeared to be uniquely responsive to AZD6244. When cells were treated with the combination of AZD6244 and PLX4032 at subsaturating concentrations (30 nm), responses at nearly all phosphosites were additive. We conclude that AZD6244 does not substantially widen the range of phosphosites inhibited by PLX4032 and that the benefit of the drug combination is best explained by their additive effects on suppressing ERK1/2 signaling. Comparison of our results to another recent ERK1/2 phosphoproteomics study revealed a surprising degree of variability in the sensitivity of phosphosites to MKK1/2 inhibitors in human cell lines, revealing unexpected cell specificity in the molecular responses to pathway activation.
Cell Reports | 2015
Jun Long; Robert Tokhunts; William M. Old; Stephane Houel; Jezabel Rodgriguez-Blanco; Samer Singh; Neal S. Schilling; Anthony J. Capobianco; Natalie G. Ahn; David J. Robbins
Hedgehog (HH) proteins are proteolytically processed into a biologically active form that is covalently modified by cholesterol and palmitate. However, most studies of HH biogenesis have characterized protein from cells in which HH is overexpressed. We purified Sonic Hedgehog (SHH) from cells expressing physiologically relevant levels and showed that it was more potent than SHH isolated from overexpressing cells. Furthermore, the SHH in our preparations was modified with a diverse spectrum of fatty acids on its amino termini, and this spectrum of fatty acids varied dramatically depending on the growth conditions of the cells. The fatty acid composition of SHH affected its trafficking to lipid rafts as well as its potency. Our results suggest that HH proteins exist as a family of diverse lipid-speciated proteins that might be altered in different physiological and pathological contexts in order to regulate distinct properties of HH proteins.
Journal of Molecular Biology | 2013
Steven L. Ponicsan; Stephane Houel; William M. Old; Natalie G. Ahn; James A. Goodrich; Jennifer F. Kugel
The B2 family of short interspersed elements is transcribed into non-coding RNA by RNA polymerase III. The ~180-nt B2 RNA has been shown to potently repress mRNA transcription by binding tightly to RNA polymerase II (Pol II) and assembling with it into complexes on promoter DNA, where it keeps the polymerase from properly engaging the promoter DNA. Mammalian Pol II is an ~500-kDa complex that contains 12 different protein subunits, providing many possible surfaces for interaction with B2 RNA. We found that the carboxy-terminal domain of the largest Pol II subunit was not required for B2 RNA to bind Pol II and repress transcription in vitro. To identify the surface on Pol II to which the minimal functional region of B2 RNA binds, we coupled multi-step affinity purification, reversible formaldehyde cross-linking, peptide sequencing by mass spectrometry, and analysis of peptide enrichment. The Pol II peptides most highly recovered after cross-linking to B2 RNA mapped to the DNA binding cleft and active-site region of Pol II. These studies determine the location of a defined nucleic acid binding site on a large, native, multi-subunit complex and provide insight into the mechanism of transcriptional repression by B2 RNA.
Journal of the American Society for Mass Spectrometry | 2015
Robert Brown; Scott Stuart; Stephane Houel; Natalie G. Ahn; William M. Old
AbstractCollision-induced dissociation (CID) remains the predominant mass spectrometry-based method for identifying phosphorylation sites in complex mixtures. Unfortunately, the gas-phase reactivity of phosphoester bonds results in MS/MS spectra dominated by phosphoric acid (H3PO4) neutral loss events, suppressing informative peptide backbone cleavages. To understand the major drivers of H3PO4 neutral loss, we performed robust nonparametric statistical analysis of local and distal sequence effects on the magnitude and variability of neutral loss, using a collection of over 35,000 unique phosphopeptide MS/MS spectra. In contrast to peptide amide dissociation pathways, which are strongly influenced by adjacent amino acid side chains, we find that neutral loss of H3PO4 is affected by both proximal and distal sites, most notably basic residues and the peptide N-terminal primary amine. Previous studies have suggested that protonated basic residues catalyze neutral loss through direct interactions with the phosphate. In contrast, we find that nearby basic groups decrease neutral loss regardless of mobility class, an effect only seen by stratifying spectra by charge-mobility. The most inhibitory bases are those immediately N-terminal to the phosphate, presumably because of steric hindrances in catalyzing neutral loss. Further evidence of steric effects is shown by the presence of proline, which can dramatically reduce the presence of neutral loss when between the phosphate and a possible charge donor. In mobile proton spectra, the N-terminus is the strongest predictor of high neutral loss, with proximity to the N-terminus essential for peptides to exhibit the highest levels of neutral loss. Graphical Abstractᅟ