Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephane Le Mouelic is active.

Publication


Featured researches published by Stephane Le Mouelic.


Journal of Geophysical Research | 2000

Discrimination between maturity and composition of lunar soils from integrated Clementine UV‐visible/near‐infrared data: Application to the Aristarchus Plateau

Stephane Le Mouelic; Yves Langevin; Stephane Erard; Patrick Pinet; Serge Chevrel; Y. D. Daydou

The reflectance spectrum of a lunar soil is mainly dominated by the composition and the degree of exposure to space weathering processes such as micrometeorite bombardment and solar wind implantation. The spectral alteration effects of space weathering should be removed for accurately investigating the composition of the lunar surface using remote sensing data. In this paper we show that the integration of the Clementine UV-visible (UVVIS) and near-infrared (NIR) channels provides an improved evaluation of the spectral alteration. The depth of the mafic absorption feature at 0.95 μm is also better defined by combining the UVVIS and NIR data. Laboratory spectra of lunar soil samples indicate that the continuum slope derived from the 1500/750 nm ratio is closely related to the concentration of fine-grained submicroscopic iron (Is). The continuum slope therefore provides an evaluation of the spectral alteration of the surface, which can be subtracted from the 1 or 2 μm absorption band depths to retrieve compositional information. This method has been applied to the Aristarchus plateau, which exhibits a broad range of mineralogical composition and maturity. A nine-channel multispectral mosaic of 680 Clementine images of the Aristarchus plateau has been processed. Eight telescopic spectra have been used to check the validity of the reduction process for the near infrared bands. The 1 μm absorption band, once corrected for spectral alteration, provides an evaluation of the initial FeO content in mafic silicates (mafic iron). Lunar soil samples show that it is possible to quantitatively map mafic iron with this technique. Our results are in good agreement with those obtained using the algorithm of Lucey et al. [1995,1998a], which is based on UVVIS bands alone. The mafic iron content and total iron content which can be derived from the combined UVVIS and NIR data sets are less sensitive to local slopes than that derived from Lucey et al.s method. This new method could therefore be useful for investigating areas at middle to high latitudes. Removing spectral alteration from the 2000/1500 nm ratio also makes possible a better discrimination between olivine and pyroxene within identified mare basalts on the Aristarchus plateau.


Nature | 2009

Global circulation as the main source of cloud activity on Titan

Sebastien Rodriguez; Stephane Le Mouelic; Pascal Rannou; Gabriel Tobie; Kevin H. Baines; Jason W. Barnes; Caitlin Ann Griffith; M. Hirtzig; Karly M. Pitman; Christophe Sotin; Robert H. Brown; Bonnie J. Buratti; Roger N. Clark; Phil D. Nicholson

Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (∼40°) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude ∼40° N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titan’s equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected.


Journal of Geophysical Research | 2017

Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars

Jeffrey R. Johnson; C. N. Achilles; James F. Bell; Steve Bender; Edward A. Cloutis; Bethany L. Ehlmann; A. A. Fraeman; O. Gasnault; Victoria E. Hamilton; Stephane Le Mouelic; Sylvestre Maurice; P. C. Pinet; Lucy M. Thompson; Danika Wellington; Roger C. Wiens

As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445–1013 nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400–840 nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak ~530 nm absorption band, an absorption band near 620 nm, and a spectral downturn after ~685 nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest ~530 nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker ~530 nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.


Geophysical Research Letters | 2015

First detection of fluorine on Mars: Implications for Gale Crater's geochemistry

O. Forni; Michael Gaft; Michael J. Toplis; Samuel Michael Clegg; Sylvestre Maurice; Roger C. Wiens; Nicolas Mangold; O. Gasnault; Violaine Sautter; Stephane Le Mouelic; P.-Y. Meslin; M. Nachon; Rhonda McInroy; A. M. Ollila; A. Cousin; John C. Bridges; N. Lanza; M. D. Dyar

Volatiles and especially halogens (F and Cl) have been recognized as important species in the genesis and melting of planetary magmas. Data from the Chemical Camera instrument on board the Mars Science Laboratory rover Curiosity now provide the first in situ analyses of fluorine at the surface of Mars. Two principal F-bearing mineral assemblages are identified. The first is associated with high aluminum and low calcium contents, in which the F-bearing phase is an aluminosilicate. It is found in conglomerates and may indicate petrologically evolved sources. This is the first time that such a petrologic environment is found on Mars. The second is represented by samples that have high calcium contents, in which the main F-bearing minerals are likely to be fluorapatites and/or fluorites. Fluorapatites are found in some sandstone and may be detrital, while fluorites are also found in the conglomerates, possibly indicating low-T alteration processes.


Geophysical Research Letters | 2014

High manganese concentrations in rocks at Gale crater, Mars

N. Lanza; Woodward W. Fischer; Roger C. Wiens; John P. Grotzinger; A. M. Ollila; A. Cousin; Ryan Anderson; Benton C. Clark; Ralf Gellert; Nicolas Mangold; S. Maurice; Stephane Le Mouelic; M. Nachon; Mariek E. Schmidt; Jeffrey A. Berger; Samuel Michael Clegg; O. Forni; Craig Hardgrove; Noureddine Melikechi; Horton E. Newsom; Violaine Sautter

The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.


The Astrophysical Journal | 2009

Characterization of clouds in Titan's tropical atmosphere

Caitlin Ann Griffith; Paulo Fernando Penteado; Sebastien Rodriguez; Stephane Le Mouelic; Kevin H. Baines; Bonnie J. Buratti; Roger N. Clark; Phil D. Nicholson; R. Jaumann; Christophe Sotin

Images of Titans clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassinis Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titans tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 μm. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8°-20° S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titans tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.


Planetary Science | 2013

Precipitation-induced surface brightenings seen on Titan by Cassini VIMS and ISS

Jason W. Barnes; Bonnie J. Buratti; Elizabeth P. Turtle; J. Bow; Paul A. Dalba; Jason Perry; Robert H. Brown; Sebastien Rodriguez; Stephane Le Mouelic; Kevin H. Baines; Christophe Sotin; Ralph D. Lorenz; Michael Malaska; Thomas B. McCord; Roger N. Clark; R. Jaumann; Paul O. Hayne; Philip D. Nicholson; Jason M. Soderblom; Laurence A. Soderblom

AbstractObservations from Cassini VIMS and ISS show localized but extensive surface brightenings in the wake of the 2010 September cloudburst. Four separate areas, all at similar latitude, show similar changes: Yalaing Terra, Hetpet Regio, Concordia Regio, and Adiri. Our analysis shows a general pattern to the time-sequence of surface changes: after the cloudburst the areas darken for months, then brighten for a year before reverting to their original spectrum. From the rapid reversion timescale we infer that the process driving the brightening owes to a fine-grained solidified surface layer. The specific chemical composition of such solid layer remains unknown. Evaporative cooling of wetted terrain may play a role in the generation of the layer, or it may result from a physical grain-sorting process.


Icarus | 2014

Evidence of Titan’s climate history from evaporite distribution

Shannon M. MacKenzie; Jason W. Barnes; Christophe Sotin; Jason M. Soderblom; Stephane Le Mouelic; Sebastien Rodriguez; Kevin H. Baines; Bonnie J. Buratti; Roger N. Clark; P. D. Nicholson; Thomas B. McCord

Abstract Water–ice-poor, 5-μm-bright material on Saturn’s moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μm-bright spectral unit, identified with Cassini’s Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μm-bright material covers 1% of Titan’s surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μm-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μm-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite?


Geophysical Research Letters | 2016

Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars

N. Lanza; Roger C. Wiens; Raymond E. Arvidson; Benton C. Clark; Woodward W. Fischer; Ralf Gellert; John P. Grotzinger; Joel A. Hurowitz; Scott M. McLennan; Richard V. Morris; Melissa S. Rice; James F. Bell; Jeffrey A. Berger; Diana L. Blaney; Nathan T. Bridges; F. Calef; John Campbell; Samuel Michael Clegg; A. Cousin; Kenneth S. Edgett; C. Fabre; Martin R. Fisk; O. Forni; Jens Frydenvang; Keian R. Hardy; Craig Hardgrove; Jeffrey R. Johnson; J. Lasue; Stephane Le Mouelic; Michael C. Malin

The Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.


Journal of Geophysical Research | 2015

Dissolution on Titan and on Earth: Toward the age of Titan's karstic landscapes

T. Cornet; Daniel Cordier; Tangui Le Bahers; O. Bourgeois; Cyril Fleurant; Stephane Le Mouelic; Nicolas Altobelli

Titans polar surface is dotted with hundreds of lacustrine depressions. Based on the hypothesis that they are karstic in origin, we aim at determining the efficiency of surface dissolution as a landshaping process on Titan, in a comparative planetology perspective with the Earth as reference. Our approach is based on the calculation of solutional denudation rates and allow inference of formation timescales for topographic depressions developed by chemical erosion on both planetary bodies. The model depends on the solubility of solids in liquids, the density of solids and liquids, and the average annual net rainfall rates. We compute and compare the denudation rates of pure solid organics in liquid hydrocarbons and of minerals in liquid water over Titan and Earth timescales. We then investigate the denudation rates of a superficial organic layer in liquid methane over one Titan year. At this timescale, such a layer on Titan would behave like salts or carbonates on Earth depending on its composition, which means that dissolution processes would likely occur but would be 30 times slower on Titan compared to the Earth due to the seasonality of precipitation. Assuming an average depth of 100 m for Titans lacustrine depressions, these could have developed in a few tens of millions of years at polar latitudes higher than 70°N and S, and a few hundreds of million years at lower polar latitudes. The ages determined are consistent with the youth of the surface (<1 Gyr) and the repartition of dissolution-related landforms on Titan.

Collaboration


Dive into the Stephane Le Mouelic's collaboration.

Researchain Logo
Decentralizing Knowledge