Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphane Maury is active.

Publication


Featured researches published by Stéphane Maury.


Ecology and Evolution | 2013

Epigenetic regulation of adaptive responses of forest tree species to the environment

Katharina Bräutigam; Kelly J. Vining; Clément Lafon-Placette; Carl Gunnar Fossdal; Marie Mirouze; José Gutiérrez Marcos; Silvia Fluch; Mario F. Fraga; M. Ángeles Guevara; Dolores Abarca; Øystein Johnsen; Stéphane Maury; Steven H. Strauss; Malcolm M. Campbell; Antje Rohde; Carmen Díaz-Sala; María-Teresa Cervera

Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.


Phytochemistry | 2001

Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth

Gaëlle Pinçon; Stéphane Maury; Laurent Hoffmann; Pierrette Geoffroy; Catherine Lapierre; Brigitte Pollet; Michel Legrand

Among the different enzymatic steps leading to lignin biosynthesis, two methylation reactions introduce the methyl groups borne by guaiacyl (G) and syringyl (S) units. Tobacco possesses a complex system of methylation comprising three classes of CCoAOMTs (caffeoyl-CoA-O-methyltransferases) and two classes of COMTs (caffeic acid OMTs). Antisense plants transformed with the CCoAOMT sequence alone or fused to COMT I sequence have been produced and compared to ASCOMT I plants in order to study the specific role of each OMT isoform in lignin biosynthesis, plant development and resistance to pathogens. Tobacco plants strongly inhibited in OMT activities have been selected and analyzed. Whereas antisense COMT I plants exhibited no visual phenotype, CCoAOMT repression was shown to strongly affect the development of both single and double transformants: a reduction of plant growth and the alteration of flower development were observed in the most inhibited plants. Lignin analysis performed by Klason and thioacidolysis methods, showed a decrease in the lignin quantity and changes in the lignin structure of ASCCoAOMT and ASCCoAOMT/ASCOMT I transgenics but not in ASCOMT I plants. Inhibition of COMT I in single as well as in double transformed tobacco was demonstrated to decrease S unit synthesis and to provoke the accumulation of 5-hydroxyguaiacyl lignin units. ASCCoAOMT/ASCOMT I tobacco was affected in lignin amount and composition, thus demonstrating additive effects of inhibition of both enzymes. The changes of lignin profiles and the phenotypical and molecular alterations observed in the different transgenic lines were particularly prominent at the later stages of plant development.


Plant Molecular Biology | 1998

CDNA CLONING, SUBSTRATE SPECIFICITY AND EXPRESSION STUDY OF TOBACCO CAFFEOYL-COA 3-O-METHYLTRANSFERASE, A LIGNIN BIOSYNTHETIC ENZYME

Françoise Martz; Stéphane Maury; Gaëlle Pinçon; Michel Legrand

Four caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) cDNA clones were isolated from RNA extracted from TMV-infected tobacco leaves using an heterologous DNA probe. The cDNAs were 84–93% identical in their nucleotide sequences, indicating that they are the products of four closely related genes. A comparison of the CCoAOMT cDNAs with database sequences and Southern blot analysis indicated that they are encoded by a new CCoAOMT family of tobacco. Overall expression of this gene family in tobacco tissues was investigated by RNA blot analysis. The expression of each individual gene was studied by RT-PCR coupled with RFLP analysis of PCR products, taking advantage of the presence of specific restriction sites in each cloned cDNA. Two members of the CCoAOMT gene family appeared to be constitutively expressed in various plant organs and tissues whereas the two others were preferentially expressed in flower organs, after tobacco mosaic virus (TMV) infection or elicitor treatment of leaves. The CCoAOMT enzymatic protein expressed in bacteria was purified and shown to be specific for the caffeoyl-CoA and 5-hydroxyferuloyl-CoA esters and to have no activity against free caffeic acid and 5-hydroxyferulic acid. The pattern of CCoAOMT transcript accumulation during development of tobacco stem was found closely related to that of COMT I genes which have been shown to be specifically involved in lignin biosynthesis. Moreover, the inhibition of COMT I gene expression in transgenic tobacco was also shown to decrease CCoAOMT gene expression, particularly in the most lignified tissues. Thus, the expression pattern and the substrate specificity of tobacco CCoAOMT sustain a preferential role in lignin biosynthesis.


Planta | 2008

Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening.

E. Teyssier; G. Bernacchia; Stéphane Maury; A. How Kit; L. Stammitti-Bert; Dominique Rolin; P. Gallusci

Tomato fruit cells are characterized by a strong increase in nuclear ploidy during fruit development. Average ploidy levels increased to similar levels (above 50C) in two distinct fruit tissues, pericarp and locular tissue. However, ploidy profiles differed significantly between these two tissues suggesting a tissue-specific control of endoreduplication in tomato fruit. To determine possible relationships between endoreduplication and epigenetic mechanisms, the methylation status of genomic DNA from pericarp and locular tissue of tomato fruit was analysed. Pericarp genomic DNA was characterized by an increase of CG and/or CNG methylation at the 5S and 18S rDNA loci and at gyspsy-like retrotransposon sequences during fruit growth. A sharp decrease of the global DNA methylation level together with a reduction of methylation at the rDNA loci was also observed in pericarp during fruit ripening. Inversely, no major variation of DNA methylation either global or locus-specific, was observed in locular tissue. Thus, tissue-specific variations of DNA methylation are unlikely to be triggered by the induction of endoreduplication in fruit tissues, but may reflect tissue-specific ploidy profiles. Expression analysis of eight putative tomato DNA methyltransferases encoding genes showed that one chromomethylase (CMT) and two rearranged methyltransferases (DRMs) are preferentially expressed in the pericarp during fruit growth and could be involved in the locus-specific increase of methylation observed at this developmental phase in the pericarp.


Plant Cell Tissue and Organ Culture | 2013

The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L.

Sonia Gadzovska; Stéphane Maury; Alain Delaunay; Mirko Spasenoski; Daniel Hagège; Didier Courtois; Claude Joseph

Hypericum perforatum is a well known medicinal plant. The main pharmacological properties are due to the presence of naphtodianthrones such as hypericin and pseudohypericin. Unfortunately the levels of these compounds vary under different environmental conditions. Elicitation of in vitro cultures is a useful approach to enhance and extend production of desirable products. Therefore, the effects of salicylic acid were characterized on different explants of H. perforatum L. (cells, calli and shoots) cultured in vitro. It appears at first that salicylic acid did not affect growth and development of these explants. In addition, the production of both hypericin and pseudohypericin has doubled in elicited cell suspension cultures but not in the two other cultures. Furthermore, phenylpropanoids that are among the most frequently observed metabolites affected upon treatment of in vitro culture material with elicitors, were produced and the enzymatic activities of phenylalanine ammonia lyase and of chalcone isomerase were stimulated upon elicitation. These effects were dependant of the type of in vitro culture, the concentration of salicylic acid and the duration post-elicitation. The H. perforatum cells were globally more sensitive to salicylic acid elicitation when maintained in an undifferentiated state and particularly in cell suspension cultures. In the absence of glands considered as the sites of naphtodianthrones biosynthesis, cells and calli were capable of producing these compounds. This implies that salicylic acid could act at biosynthesis level but not for the accumulation of both hypericin and pseudohypericin. Consequently, the regulation of this process is more complex than cited in the literature involving the responsibility of only Hyp-1 gene, encoding a hypericin biosynthetic enzyme, cloned and characterized from H. perforatum.


Annals of Forest Science | 2010

DNA methylation and histone acetylation: genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity

Delphine Gourcilleau; Marie-Béatrice Bogeat-Triboulot; Didier Le Thiec; Clément Lafon-Placette; Alain Delaunay; Walid Abu El-Soud; Franck Brignolas; Stéphane Maury

Abstract• Several reports on annual plants have already shown the involvement of epigenetic modifiers such as DNA methylation in their adaptation to abiotic stresses.• Nevertheless, the genotypic variations of epigenetic modifiers, their possible correlations with morphological traits and the impact of water deficit have not been described for perennial plants.• Six genotypes of Populus deltoides × P. nigra were subjected or not to a moderate water deficit treatment. Various morphological traits such as the height of the plants, their biomass and the total leaf area were measured to characterize the productivity in both conditions. Levels of DNA methylation, histone acetylation and the activities and isoform accumulation of the corresponding enzymes were measured at the shoot apex, the site of morphogenesis. Genotypic variation was observed for the morphological traits and the epigenetic variables and correlations were established among them. Genotypic variation for DNA methylation was detected in hybrid poplars. A positive correlation was demonstrated between DNA methylation percentage and productivity under well watered conditions.• While there was a general decrease of growth for all genotypes in response to a moderate water deficit, genotypic dependant variations of DNA methylation were found suggesting different strategies among hybrids.Résumé• Plusieurs études sur des plantes annuelles ont déjà montré l’implication des modifications épigénétiques telles que la méthylation de l’ADN dans la plasticité de leurs réponses aux contraintes abiotiques.• Néanmoins, les variations génotypiques de ces modifications épigénétiques, leur possible corrélation avec des variables de croissance et l’impact d’un déficit hydrique n’ont pas été décrits sur une plante pérenne.• Six génotypes de Populus deltoïdes × P. nigra ont été soumis ou non à un déficit hydrique modéré et plusieurs variables de croissance ont été mesurées afin de caractériser leur productivité. Les niveaux de méthylation de l’ADN, d’acétylation des histones, les activités enzymatiques et l’accumulation des isoformes correspondantes ont été mesurés sur des apex caulinaires, site de la morphogenèse. Des variations génotypiques ont été observées pour les variables de croissance et épigénétiques. Une corrélation positive a été mise en évidence entre la méthylation de l’ADN et la productivité en condition hydrique favorable.• Bien qu’il y ait une diminution générale de la croissance de tous les génotypes en réponse à un déficit hydrique modéré, des variations génotype-dépendant de la méthylation de l’ADN ont été trouvées suggérant différentes stratégies entre hybrides.


Physiologia Plantarum | 2014

In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses

Caroline Teyssier; Stéphane Maury; Martine Beaufour; Cécile Grondin; Alain Delaunay; Claire Le Metté; Kévin Ader; Martine Cadene; Philippe Label; Marie-Anne Lelu-Walter

A global DNA methylation and proteomics approach was used to investigate somatic embryo maturation in hybrid larch. Each developmental step during somatic embryogenesis was associated with a distinct and significantly different global DNA methylation level: from 45.8% mC for undifferentiated somatic embryos (1-week proliferation) to 61.5% mC for immature somatic embryos (1-week maturation), while maturation was associated with a decrease in DNA methylation to 53.4% for mature cotyledonary somatic embryos (8-weeks maturation). The presence of 5-azacytidine (hypo-methylating agent) or hydroxyurea (hyper-methylating agent) in the maturation medium altered the global DNA methylation status of the embryogenic cultures, and significantly reduced both their relative growth rate and embryogenic potential, suggesting an important role for DNA methylation in embryogenesis. Maturation was also assessed by examining changes in the total protein profile. Storage proteins, identified as legumin- and vicilin-like, appeared at the precotyledonary stage. In the proteomic study, total soluble proteins were extracted from embryos after 1 and 8 weeks of maturation, and separated by two-dimensional gel electrophoresis. There were 147 spots which showed significant differences between the stages of maturation; they were found to be involved mainly in primary metabolism and the stabilization of the resulting metabolites. This indicated that the somatic embryo was still metabolically active at 8 weeks of maturation. This is the first report of analyses of global DNA methylation (including the effects of hyper- and hypo-treatments) and proteome during somatic embryogenesis in hybrid larch, and thus provides novel insights into maturation of conifer somatic embryos.


Planta | 2006

Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines

Adisa Causevic; Marie-Véronique Gentil; Alain Delaunay; Walid Abu El-Soud; Zacarias Garcia; Christophe Pannetier; Franck Brignolas; Daniel Hagège; Stéphane Maury

In order to evaluate the permanent chromatin remodeling in plant allowing their high developmental plasticity, three sugarbeet cell lines (Beta vulgaris L. altissima) originating from the same mother plant and exhibiting graduate states of differentiation were analyzed. Cell differentiation has been estimated by the cell redox state characterized by 36 biochemical parameters as reactive oxygen species steady-state levels, peroxidation product contents and enzymatic or non-enzymatic protective systems. Chromatin remodeling has been estimated by the measurement of levels of DNA methylation, histone acetylation and corresponding enzyme activities that were shown to differ between cell lines. Furthermore, distinct loci related to proteins involved in cell cycle, gene expression regulation and cell redox state were shown by restriction landmark genome scanning or bisulfite sequencing to display differential methylation states in relation to the morphogenic capacity of the lines. DNA methylating, demethylating and/or histone acetylating treatments allowed to generate a collection of sugarbeet cell lines differing by their phenotypes (from organogenic to dedifferentiated), methylcytosine percentages (from 15.0 to 43.5%) and acetylated histone ratios (from 0.37 to 0.52). Correlations between methylcytosine or acetylated histone contents and levels of various parameters (23 or 7, respectively, out of 36) of the cell redox state could be established. These data lead to the identification of biomarkers of sugarbeet morphogenesis in vitro under epigenetic regulation and provide evidence for a connection between plant morphogenesis in vitro, cell redox state and epigenetic mechanisms.


New Phytologist | 2013

Methylome of DNase I sensitive chromatin in Populus trichocarpa shoot apical meristematic cells: a simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state.

Clément Lafon-Placette; Patricia Faivre-Rampant; Alain Delaunay; Nathaniel R. Street; Franck Brignolas; Stéphane Maury

DNA methylation is involved in the control of plant development and adaptation to the environment through modifications of chromatin compaction and gene expression. In poplar (Populus trichocarpa), a perennial plant, variations in DNA methylation have been reported between genotypes and tissues or in response to drought. Nevertheless, the relationships between gene-body DNA methylation, gene expression and chromatin compaction still need clarification. Here, DNA methylation was mapped in the noncondensed chromatin fraction from P. trichocarpa shoot apical meristematic cells, the center of plant morphogenesis, where DNA methylation variations could influence the developmental trajectory. DNase I was used to isolate the noncondensed chromatin fraction. Methylated sequences were immunoprecipitated, sequenced using Illumina/Solexa technology and mapped on the v2.0 poplar genome. Bisulfite sequencing of candidate sequences was used to confirm mapping data and to assess cytosine contexts and methylation levels. While the methylated DNase I hypersensitive site fraction covered 1.9% of the poplar genome, it contained sequences corresponding to 74% of poplar gene models, mostly exons. The level and cytosine context of gene-body DNA methylation varied with the structural characteristics of the genes. Taken together, our data show that DNA methylation is widespread and variable among genes in open chromatin of meristematic cells, in agreement with a role in their developmental trajectory.


Journal of Experimental Botany | 2011

Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes

Marie-Véronique Trap-Gentil; Claire Hébrard; Clément Lafon-Placette; Alain Delaunay; Daniel Hagège; Claude Joseph; Franck Brignolas; Marc Lefebvre; Steve Barnes; Stéphane Maury

An epigenetic control of vernalization has been demonstrated in annual plants such as Arabidopsis and cereals, but the situation remains unclear in biennial plants such as sugar beet that has an absolute requirement for vernalization. The role of DNA methylation in flowering induction and the identification of corresponding target loci also need to be clarified. In this context, sugar beet (Beta vulgaris altissima) genotypes differing in bolting tolerance were submitted to various bolting conditions such as different temperatures and/or methylating drugs. DNA hypomethylating treatment was not sufficient to induce bolting while DNA hypermethylation treatment inhibits and delays bolting. Vernalizing and devernalizing temperatures were shown to affect bolting as well as DNA methylation levels in the shoot apical meristem. In addition, a negative correlation was established between bolting and DNA methylation. Genotypes considered as resistant or sensitive to bolting could also be distinguished by their DNA methylation levels. Finally, sugar beet homologues of the Arabidopsis vernalization genes FLC and VIN3 exhibited distinct DNA methylation marks during vernalization independently to the variations of global DNA methylation. These vernalization genes also displayed differences in mRNA accumulation and methylation profiles between genotypes resistant or sensitive to bolting. Taken together, the data suggest that the time course and amplitude of DNA methylation variations are critical points for the induction of sugar beet bolting and represent an epigenetic component of the genotypic bolting tolerance, opening up new perspectives for sugar beet breeding.

Collaboration


Dive into the Stéphane Maury's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Legrand

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Segura

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierrette Geoffroy

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge