Stéphane Mottin
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Mottin.
Nature | 2004
Clémentine Vignal; Nicolas Mathevon; Stéphane Mottin
According to the social intelligence hypothesis, social context represents an important force driving the selection of animal cognitive abilities such as the capacity to estimate the nature of the social relationships between other individuals. Despite this importance, the influence of this force has been assessed only in primates and never in other animals showing social interactions. In this way, avian communication generally takes place in a network of signallers and receivers, which represents an audience altering individual signalling behaviours. Indeed, vocal amplitude and repertoire are known to be socially regulated and the attitude towards the opposite sex may change depending on the audience. This ‘audience effect’ provides support for the reality of social awareness in some bird species. However no evidence has yet been found to suggest that birds are able to estimate the characteristics of the social relationships between group-mates. Here we show that the male of a gregarious songbird species—the zebra finch (Taeniopygia guttata)—pays attention to the mating status of conspecific pairs, and uses this information to control its behaviour towards its female partner.
Behavioural Processes | 2008
Clémentine Vignal; Nicolas Mathevon; Stéphane Mottin
Zebra finches are monogamous birds living in large assemblies, which represent a source of confusion for recognition between mates. Because the members of a pair use distance calls to remain in contact, call-based mate recognition is highly probable in this species. Whereas it had been previously demonstrated in males [Vignal, C., Mathevon, N., Mottin, S., 2004. Audience drives male songbird response to mates voice. Nature 430, 448-451], call-based mate recognition remained to be shown in females. By analysing the acoustic structure of male calls, we investigated the existence of an individual signature and identified the involved acoustic cues. We tested to see if females can identify their mates on the basis of their calls alone, and performed preliminary experiments using modified signals to investigate the acoustic basis of this recognition. Playback tests carried on six individuals showed that a female zebra finch is able to perform the call-based recognition of its mate. Our experiments suggested that the female uses both the energy spectrum and the frequency modulation of the male signal. More experiments are now needed to decipher precisely which acoustic cues are used by females for recognition.
Journal of Neurochemistry | 2003
Stéphane Mottin; P. Laporte; Raymond Cespuglio
Owing to the lack of methods capable to monitor the energetic processes taking place within small brain regions (i.e. nucleus raphe dorsalis, nRD), the neurotoxicity of various categories of substances, including antibiotics and psycho‐active drugs, still remains difficult to evaluate. Using an in vivo picosecond optical spectroscopy imaging method, we report that chloramphenicol (CAP), besides its well‐known ability to inhibit the mitochondria protein synthesis, also influences the NADH/NAD+ redox processes of the respiratory chain. At a 200‐mg/kg dose, CAP indeed produces a marked increase in the fluorescent signal of the nRD which, according to clear evidence, is likely to be related to the NADH concentration. This effect also implies an efficient inhibition of complex I of the respiratory chain by CAP. It refers to the mechanism through which the adverse effects of the antibiotic may take place. It could explain why paradoxical sleep, a state needing aerobic energy to occur, is suppressed after CAP administration. The present approach constitutes the first attempt to determine by fluorescence methods the effects of substances on deep brain structures of the freely moving animal. It points out that in vivo ultrafast optical methods are innovative and adequate tools for combined neurochemical and behavioural approaches.
Neuroscience | 1997
Stéphane Mottin; P. Laporte; Michel Jouvet; Raymond Cespuglio
The present paper reports a nanosecond time-resolved fluorescence derived from the cortex and the area of the periaqueductal gray including the nucleus raphe dorsalis (PAG-nRD) in unanaesthetized freely moving rats. The measurements were acquired through a single optic fibre transmitting a subnanosecond nitrogen laser pulse (337 nm, 15 Hz) and collecting the brain fluorescence occurring at 460 nm which might depend on mitochondrial NADH (reduced form of nicotinamide adenine dinucleotide). The fluorometric method was combined with polygraphic recordings, and this procedure allowed us to define, for the first time, variations of the 460 nm signal occurring throughout the sleep-wake cycle. In the PAG-nRD, the signal exhibited moderate heterogeneous variation in amplitude during slow-wave as compared to the waking state. Constant increases were observed during paradoxical sleep as compared to the waking state. For this state of sleep the magnitude of the variations depended on the optic fibre location. In the cortex and during either slow-wave sleep or paradoxical sleep, the signal presented moderate increases which were significant during paradoxical sleep. The magnitude of the redox variations observed either in the PAG-nRD or in the cortex might be ascribed to the oxidative energy balance which is related to sleep states.
Physics in Medicine and Biology | 2008
Clémentine Vignal; Tiny Boumans; B Montcel; S Ramstein; Marleen Verhoye; J. Van Audekerke; Nicolas Mathevon; A. Van der Linden; Stéphane Mottin
Songbirds have been evolved into models of choice for the study of the cerebral underpinnings of vocal communication. Nevertheless, there is still a need for in vivo methods allowing the real-time monitoring of brain activity. Functional Magnetic Resonance Imaging (fMRI) has been applied in anesthetized intact songbirds. It relies on blood oxygen level-dependent (BOLD) contrast revealing hemodynamic changes. Non-invasive near-infrared spectroscopy (NIRS) is based on the weak absorption of near-infrared light by biological tissues. Time-resolved femtosecond white laser NIRS is a new probing method using real-time spectral measurements which give access to the local variation of absorbing chromophores such as hemoglobins. In this study, we test the efficiency of our time-resolved NIRS device in monitoring physiological hemodynamic brain responses in a songbird, the zebra finch (Taeniopygia guttata), using a hypercapnia event (7% inhaled CO(2)). The results are compared to those obtained using BOLD fMRI. The NIRS measurements clearly demonstrate that during hypercapnia the blood oxygen saturation level increases (increase in local concentration of oxyhemoglobin, decrease in deoxyhemoglobin concentration and total hemoglobin concentration). Our results provide the first correlation in songbirds of the variations in total hemoglobin and oxygen saturation level obtained from NIRS with local BOLD signal variations.
PLOS ONE | 2010
Stéphane Mottin; Grigory Panasenko; S. Sivaji Ganesh
In biophotonics, the light absorption in a tissue is usually modeled by the Helmholtz equation with two constant parameters, the scattering coefficient and the absorption coefficient. This classic approximation of “haemoglobin diluted everywhere” (constant absorption coefficient) corresponds to the classical homogenization approach. The paper discusses the limitations of this approach. The scattering coefficient is supposed to be constant (equal to one) while the absorption coefficient is equal to zero everywhere except for a periodic set of thin parallel strips simulating the blood vessels, where it is a large parameter The problem contains two other parameters which are small: , the ratio of the distance between the axes of vessels to the characteristic macroscopic size, and , the ratio of the thickness of thin vessels and the period. We construct asymptotic expansion in two cases: and and prove that in the first case the classical homogenization (averaging) of the differential equation is true while in the second case it is wrong. This result may be applied in the biomedical optics, for instance, in the modeling of the skin and cosmetics.
Applied Spectroscopy | 1993
Stéphane Mottin; Canh Tran-Minh; P. Laporte; Raymond Cespuglio; Michel Jouvet
At pH 7 and with the excitation at wavelengths above 315 nm, previously unreported fluorescence of 5-HT (5-hydroxytryptamine) is observed. Two fluorescence bands were observed for 5-HT; the first emits at around 390 nm with an associated lifetime near 1 ns, and the other (well known) emits at 340 nm with an associated lifetime of 2.7 ns. With both static and time-resolved fluorescences, the spectral and temporal effects of the excitation wavelength were studied between 285 and 340 nm. With these basic spectroscopic properties as a starting point, a fiber-optic chemical sensor (FOCS) was developed in order to measure 5-HT with a single-fiber configuration, nitrogen laser excitation, and fast digitizing techniques. Temporal effects including fluorescence of the optical fiber were studied and compared with measurements both directly in cuvette and through the fiber-optic sensor. Less than thirty seconds are required for each measurement. A detection limit of 5-HT is reached in the range of 5 μM. Our system, with an improved sensitivity, could therefore be a possible and convenient “tool” for in vivo determination of 5-HT.
Applied Optics | 2005
Stéphane Ramstein; Clémentine Vignal; Nicolas Mathevon; Stéphane Mottin
By assessing the cerebral blood volume and the hemoglobin oxygen saturation level, near-infrared spectroscopy (NIRS) probes brain oxygenation, which reflects cerebral activity. To develop a noninvasive method monitoring the brain of a songbird, we use an original NIRS device, i.e., a white laser coupled with an ultrafast spectrotemporal detector of optical signals without wavelength scanning. We perform in vivo measurements of the absorption coefficient and the reduced scattering coefficient of the caudal nidopallium area of the head of a songbird (the zebra finch).
Journal of Cerebral Blood Flow and Metabolism | 2011
Stéphane Mottin; Bruno Montcel; Hugues Guillet de Chatellus; Stéphane Ramstein
Contrary to the intense debate about brain oxygen dynamics and its uncoupling in mammals, very little is known in birds. In zebra finches, picosecond optical tomography with a white laser and a streak camera can measure in vivo oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) concentration changes following physiologic stimulation (familiar calls and songs). Picosecond optical tomography showed sufficient submicromolar sensitivity to resolve the fast changes in the hippocampus and auditory forebrain areas with 250 μm resolution. The time course is composed of (1) an early 2-second-long event with a significant decrease in Hb and HbO2 levels of −0.7 and −0.9 μmol/L, respectively, (2) a subsequent increase in blood oxygen availability with a plateau of HbO2 (+ 0.3 μmol/L), and (3) pronounced vasodilatation events immediately after the end of the stimulus. One of the findings of our study is the direct link between blood oxygen level-dependent signals previously published in birds and our results. Furthermore, the early vasoconstriction event and poststimulus ringing seem to be more pronounced in birds than in mammals. These results in birds, tachymetabolic vertebrates with a long lifespan, can potentially yield new insights, e.g., into brain aging.
Virology | 2009
Philip Lawrence; Willy Berlier; Olivier Delézay; Sabine Palle; Thomas Olivier; Henia Saoudin; Stéphane Mottin; Frédéric Lucht; Bruno Pozzetto; Thomas Bourlet
Genetic differences between blood and mucosal-derived HIV-1 strains have been widely reported. As amplification of HIV-1 strains from mucosal samples including semen or saliva by co-culture has low sensitivity, we developed the construction of chimeric viruses expressing wild-type seminal HIV-1 envelope protein. Chimeric viruses were produced by co-transfection of a V1-V3 deleted pNL 43 vector and PCR fragments spanning the deleted region, amplified from HIV-1 RNA positive seminal plasma samples. After an initial testing of co-receptor usage by a tropism recombinant test, replication capacity and amplification of these recombinant viruses were assessed using PBMC. Four chimeric replicative strains, all using CXCR4 as coreceptor, were produced. The interaction between cell-free viral particles and reporter cell lines was assessed by confocal microscopy. These replicative chimeras exhibiting HIV-1 env from seminal strains represent useful tools for the in vitro study of the heterosexual transmission of HIV-1 and testing of microbicide activity.