Stéphane Pierre
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Pierre.
Oncogene | 2009
Linh-Chi Bui; Céline Tomkiewicz; Aline Chevallier; Stéphane Pierre; Anne-Sophie Bats; S Mota; J Raingeaud; J Pierre; M Diry; C Transy; Michèle Garlatti; Robert Barouki; Xavier Coumoul
Aryl hydrocarbon receptor (AhR), or dioxin receptor, is a transcription factor that induces adaptive metabolic pathways in response to environmental pollutants. Recently, other pathways were found to be altered by AhR and its ligands. Indeed, developmental defects elicited by AhR ligands suggest that additional cellular functions may be targeted by this receptor, including cell migration and plasticity. Here, we show that dioxin-mediated activation of Ahr induces Nedd9/Hef1/Cas-L, a member of the Cas protein family recently identified as a metastasis marker. The Hef1 gene induction is mediated by two xenobiotic responsive elements present in this gene promoter. Moreover, using RNA interference, we show that Nedd9/Hef1/Cas-L mediates the dioxin-elicited changes related to cell plasticity, including alterations of cellular adhesion and shape, cytoskeleton reorganization, and increased cell migration. Furthermore, we show that both E-cadherin repression and Jun N-terminal kinases activation by dioxin and AhR also depend on the expression of Nedd9/Hef1/Cas-L. Our study unveils, for the first time, a link between pollutants exposure and the induced expression of a metastasis marker and shows that cellular migration and plasticity markers are regulated by AhR and its toxic ligands.
Toxicological Sciences | 2014
Stéphane Pierre; Aline Chevallier; F. Teixeira-Clerc; Ariane Ambolet-Camoit; Linh-Chi Bui; Anne-Sophie Bats; Jean-Christophe Fournet; Pedro M. Fernández-Salguero; Martine Aggerbeck; Robert Barouki; Xavier Coumoul
The contribution of environmental pollutants to liver fibrosis is an important and poorly explored issue. In vitro studies suggest that the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands induce several genes that are known to be upregulated during liver fibrosis. Our aim was to determine whether exposure to such pollutants can lead to liver fibrosis and to characterize the mechanisms of action. Mice were treated for 2, 14, or 42 days, once a week with 25 µg/kg of TCDD. Gene and protein expression, in vitro and in vivo, as well as liver histology were investigated for each treatment. Treatment of mice with TCDD for 2 weeks modified the hepatic expression of markers of fibrosis such as collagen 1A1 and α-smooth muscle actin. This is not observed in AhR knockout mice. Following 6 weeks of treatment, histological features of murine hepatic fibrosis became apparent. In parallel, the levels of inflammatory cytokines (interleukin-1 beta, tumor necrosis factor α) and of markers of activated fibroblasts(fibroblast-specific protein 1) were found to be upregulated. Interestingly, we also found increased expression of genes of the TGF-β pathway and a concomitant decrease of miR-200a levels. Because the transcription factors of the Snail family were shown to be involved in liver fibrosis, we studied their regulation by TCDD. Two members of the Snail family were increased, whereas their negative targets, the epithelial marker E-cadherin and Claudin 1, were decreased. Further, the expression of mesenchymal markers was increased. Finally, we confirmed that Snai2 is a direct transcriptional target of TCDD in the human hepatocarcinoma cell line, HepG2. The AhR ligand, TCDD, induces hepatic fibrosis by directly regulating profibrotic pathways.
Biochemical Pharmacology | 2011
Stéphane Pierre; Anne-Sophie Bats; Xavier Coumoul
Son of Sevenless (SOS) was discovered in Drosophila melanogaster. Essential for normal eye development in Drosophila, SOS has two human homologues, SOS1 and SOS2. The SOS1 gene encodes the Son of Sevenless 1 protein, a Ras and Rac guanine nucleotide exchange factor. This protein is composed of several important domains. The CDC25 and REM domains provide the catalytic activity of SOS1 towards Ras and the histone fold DH/PH (Dbl homology and Pleckstrin homology) domains function, in tandem, to stimulate GTP/GDP exchange for Rac. In contrast to Ras, there have been few studies that implicate SOS1 in human disease and, initially, less attention was given to this gene. However, mutations in SOS1 have been reported recently in Noonan syndrome and in type 1 hereditary gingival fibromatosis. Although, there have been very few studies that focus on the regulation of this important gene by physiological or exogenous factors, we recently found that the SOS1 gene was induced by the environmental toxin, dioxin, and that this effect was mediated by the aryl hydrocarbon receptor (AhR). These recent observations raise the possibility that alterations in the expression of the SOS1 gene and, consequently, in the activity of the SOS1 protein may affect toxicological endpoints and lead to clinical disease. These possibilities, thus, have stimulated much interest in SOS1 recently. In this article, we review the functions of SOS1 and the evidence for its roles in physiology and pathology across species.
Toxicological Sciences | 2010
Ariane Ambolet-Camoit; Linh Chi Bui; Stéphane Pierre; Aline Chevallier; Alexandre Marchand; Xavier Coumoul; Michèle Garlatti; Karine Andreau; Robert Barouki; Martine Aggerbeck
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental pollutant that binds the aryl hydrocarbon receptor (AhR), a transcription factor that triggers various biological responses. In this study, we show that TCDD treatment counteracts the p53 activation (phosphorylation and acetylation) elicited by a genotoxic compound, etoposide, in the human hepatocarcinoma cell line HepG2 and we delineated the mechanisms of this interaction. Using small interfering RNA knockdown experiments, we found that the newly described metastasis marker, anterior gradient-2 (AGR2), is involved in this effect. Both AGR2 messenger RNA (mRNA) and protein levels were increased (sixfold and fourfold, respectively) by TCDD treatment, and this effect was mediated by the AhR receptor. The half-life of AGR2 mRNA was unchanged by TCDD treatment. Analysis of the promoter of the AGR2 gene revealed three putative xenobiotic-responsive elements (XREs) in the proximal 3.5-kb promoter. Transient transfection of HepG2 cells by the Gaussia luciferase reporter gene driven by various deleted and mutated fragments of the promoter indicated that only the most proximal XRE was active. Binding of the AhR to the endogenous AGR2 promoter was also triggered by TCDD treatment. These results suggest that AhR ligands such as TCDD might contribute to tumor progression by inhibiting p53 regulation (phosphorylation and acetylation) triggered by genotoxicants via the increased expression of the metastasis marker AGR2.
Biochemical Pharmacology | 2011
Stéphane Pierre; Anne-Sophie Bats; Aline Chevallier; Linh-Chi Bui; Ariane Ambolet-Camoit; Michèle Garlatti; Martine Aggerbeck; Robert Barouki; Xavier Coumoul
TCDD (2,3,7,8-tetrachlorodibenzodioxin), a highly persistent environmental pollutant and a human carcinogen, is the ligand with the highest affinity for the Aryl Hydrocarbon Receptor (AhR) that induces via the AhR, xenobiotic metabolizing enzyme genes as well as several other genes. This pollutant elicits a variety of systemic toxic effects, which include cancer promotion and diverse cellular alterations that modify cell cycle progression and cell proliferation. Large-scale studies have shown that the expression of Son of Sevenless 1 (SOS1), the main mediator of Ras activation, is one of the targets of dioxin in human cultured cells. In this study, we investigated the regulation of the previously uncharacterized SOS1 gene promoter by the AhR and its ligands in the human hepatocarcinoma cell line, HepG2. We found that several environmental pollutants (AhR ligands) induce SOS1 gene expression by increasing its transcription. Chromatin immunoprecipitation experiments demonstrated that the AhR binds directly and activates the SOS1 gene promoter. We also showed that dioxin treatment leads to an activated Ras-GTP state, to ERK activation and to accelerated cellular proliferation. All these effects were mediated by SOS1 induction as shown by knock down experiments. Our data indicate that dioxin-induced cellular proliferation is mediated, at least partially, by SOS1 induction. Remarkably, our studies also suggest that SOS1 induction leads to functional effects similar to those elicited by the well-characterized oncogenic Ras mutations.
Toxicological Sciences | 2016
Linh-Chi Bui; Céline Tomkiewicz; Stéphane Pierre; Aline Chevallier; Robert Barouki; Xavier Coumoul
The regulation of cell migration is a key factor for the dissemination of metastatic cells during tumor progression. Aquaporins are membrane channels which allow transmembrane fluxes of water and glycerol in cells in a variety of mammalian tissues. Here, we show that AQP3, which has been incriminated in cancer progression, is regulated by the AhR, or dioxin receptor. AhR is a transcription factor which is triggered in response to environmental pollutants and it has been shown to regulate several cellular processes including cell migration and plasticity. In vivo, upon exposure to the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the expression of AQP3 is increased significantly in several murine tissues including the liver. In vitro, treatment of human HepG2 cells with TCDD also increased the expression of AQP3 mRNA and protein. These effects resulted from the activation of AhR as shown by RNA interference, chromatin immunoprecipitation and the use of several AhR ligands. Immunofluorescence and real-time analysis of cell migration (XCelligence) demonstrated that knockdown of AQP3 mRNA using small interfering RNA impairs the remodeling of cell shape and the triggering of cell migration that is induced by TCDD. Our work reveals, for the first time, a link between exposure to pollutant and the induction of an aquaporin which has been suspected to play a role during metastasis.
PLOS ONE | 2015
Erwan Guyot; Yevgeniya Solovyova; Céline Tomkiewicz; Alix Leblanc; Stéphane Pierre; Souleiman El Balkhi; Marie-Aude Le Frère-Belda; Fabrice Lecuru; Joël Poupon; Robert Barouki; Martine Aggerbeck; Xavier Coumoul
It is well known that several metals, such as lead, mercury, cadmium, and vanadium, can mimic the effects of estrogens (metallo-estrogens). Nevertheless, there are only a few studies that have assessed the effects of toxic metals on the female genital tract and, in particular, endometrial tissue. In this context, we measured the concentrations of several trace elements in human endometrial tissue samples from individuals with hyperplasia or adenocarcinoma and in normal tissues. Hyperplasic endometrial tissue has a 4-fold higher concentration of mercury than normal tissue. Mercury can affect both the AhR and ROS signaling pathways. Thus, we investigated the possible toxic effects of mercury by in vitro studies. We found that mercury increases oxidative stress (increased HO1 and NQO1 mRNA levels) and alters the cytoskeleton in the human endometrial Ishikawa cell line and to a lesser extent, in the “less-differentiated” human endometrial Hec-1b cells. The results might help to explain a potential link between this metal and the occurrence of endometrial hyperplasia.
Archives of Toxicology | 2015
Ludmila Juricek; Linh-Chi Bui; Florent Busi; Stéphane Pierre; Erwan Guyot; Aazdine Lamouri; Jean-Marie Dupret; Robert Barouki; Xavier Coumoul; Fernando Rodrigues-Lima
Toxicology Letters | 2016
Xavier Coumoul; Stéphane Pierre; Aline Chevallier; Fatima Teixeira Clerc; Ariane Ambolet Camoit; Linh Chi Bui; Anne Sophie Bats; Jean Christophe Fournet; Pedro M. Fernández Salguero; Robert Barouki; Sophie Lotersztajan; Martine Aggerbeck
Nutrition Clinique Et Metabolisme | 2014
Ludmila Juricek; Linh-Chi Bui; Florent Busi; Stéphane Pierre; Erwan Guyot; Aazdine Lamouri; Jean-Marie Dupret; Robert Barouki; Fernando Rodrigues-Lima; Xavier Coumoul