Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphane Ravanel is active.

Publication


Featured researches published by Stéphane Ravanel.


Journal of Biological Chemistry | 2004

Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol.

Stéphane Ravanel; Maryse A. Block; Pascal Rippert; Samuel Jabrin; Gilles Curien; Fabrice Rébeillé; Roland Douce

The subcellular distribution of Met and S-adenosylmethionine (AdoMet) metabolism in plant cells discloses a complex partition between the cytosol and the organelles. In the present work we show that Arabidopsis contains three functional isoforms of vitamin B12-independent methionine synthase (MS), the enzyme that catalyzes the methylation of homocysteine to Met with 5-methyltetrahydrofolate as methyl group donor. One MS isoform is present in chloroplasts and is most likely required to methylate homocysteine that is synthesized de novo in this compartment. Thus, chloroplasts are autonomous and are the unique site for de novo Met synthesis in plant cells. The additional MS isoforms are present in the cytosol and are most probably involved in the regeneration of Met from homocysteine produced in the course of the activated methyl cycle. Although Met synthesis can occur in chloroplasts, there is no evidence that AdoMet is synthesized anywhere but the cytosol. In accordance with this proposal, we show that AdoMet is transported into chloroplasts by a carrier-mediated facilitated diffusion process. This carrier is able to catalyze the uniport uptake of AdoMet into chloroplasts as well as the exchange between cytosolic AdoMet and chloroplastic AdoMet or S-adenosylhomocysteine. The obvious function for the carrier is to sustain methylation reactions and other AdoMet-dependent functions in chloroplasts and probably to remove S-adenosylhomocysteine generated in the stroma by methyltransferase activities. Therefore, the chloroplastic AdoMet carrier serves as a link between cytosolic and chloroplastic one-carbon metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses

Fabrice Rébeillé; Samuel Jabrin; Richard Bligny; Karen Loizeau; Bernadette Gambonnet; Valérie Van Wilder; Roland Douce; Stéphane Ravanel

Despite recent progress in elucidating the regulation of methionine (Met) synthesis, little is known about the catabolism of this amino acid in plants. In this article, we present several lines of evidence indicating that the cleavage of Met catalyzed by Met γ-lyase is the first step in this process. First, we cloned an Arabidopsis cDNA coding a functional Met γ-lyase (AtMGL), a cytosolic enzyme catalyzing the conversion of Met into methanethiol, α-ketobutyrate, and ammonia. AtMGL is present in all of the Arabidopsis organs and tissues analyzed, except in quiescent dry mature seeds, thus suggesting that AtMGL is involved in the regulation of Met homeostasis in various situations. Also, we demonstrated that the expression of AtMGL was induced in Arabidopsis cells in response to high Met levels, probably to bypass the elevated Km of the enzyme for Met. Second, [13C]-NMR profiling of Arabidopsis cells fed with [13C]Met allowed us to identify labeled S-adenosylmethionine, S-methylmethionine, S-methylcysteine (SMC), and isoleucine (Ile). The unexpected production of SMC and Ile was directly associated to the function of Met γ-lyase. Indeed, we showed that part of the methanethiol produced during Met cleavage could react with an activated form of serine to produce SMC. The second product of Met cleavage, α-ketobutyrate, entered the pathway of Ile synthesis in plastids. Together, these data indicate that Met catabolism in Arabidopsis cells is initiated by a γ-cleavage process and can result in the formation of the essential amino acid Ile and a potential storage form for sulfide or methyl groups, SMC.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Tetrahydrofolate biosynthesis in plants: Molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana

Stéphane Ravanel; Hélène Cherest; Samuel Jabrin; Didier Grunwald; Yolande Surdin-Kerjan; Roland Douce; Fabrice Rébeillé

Tetrahydrofolate coenzymes involved in one-carbon (C1) metabolism are polyglutamylated. In organisms that synthesize tetrahydrofolate de novo, dihydrofolate synthetase (DHFS) and folylpolyglutamate synthetase (FPGS) catalyze the attachment of glutamate residues to the folate molecule. In this study we isolated cDNAs coding a DHFS and three isoforms of FPGS from Arabidopsis thaliana. The function of each enzyme was demonstrated by complementation of yeast mutants deficient in DHFS or FPGS activity, and by measuring in vitro glutamate incorporation into dihydrofolate or tetrahydrofolate. DHFS is present exclusively in the mitochondria, making this compartment the sole site of synthesis of dihydrofolate in the plant cell. In contrast, FPGS is present as distinct isoforms in the mitochondria, the cytosol, and the chloroplast. Each isoform is encoded by a separate gene, a situation that is unique among eukaryotes. The compartmentation of FPGS isoforms is in agreement with the predominance of γ-glutamyl-conjugated tetrahydrofolate derivatives and the presence of serine hydroxymethyltransferase and C1-tetrahydrofolate interconverting enzymes in the cytosol, the mitochondria, and the plastids. Thus, the combination of FPGS with these folate-mediated reactions can supply each compartment with the polyglutamylated folate coenzymes required for the reactions of C1 metabolism. Also, the multicompartmentation of FPGS in the plant cell suggests that the transported forms of folate are unconjugated.


Plant Physiology | 2003

One-Carbon Metabolism in Plants. Regulation of Tetrahydrofolate Synthesis during Germination and Seedling Development

Samuel Jabrin; Stéphane Ravanel; Bernadette Gambonnet; Roland Douce; Fabrice Rébeillé

Tetrahydrofolate (THF) is a central cofactor for one-carbon transfer reactions in all living organisms. In this study, we analyzed the expression of dihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) in pea (Pisum sativum) organs during development, and so the capacity to synthesize dihydropteroate, an intermediate in the de novo THF biosynthetic pathway. During seedling development, all of the examined organs/tissues contain THF coenzymes, collectively termed folate, and express the HPPK-DHPS enzyme. This suggests that each organ/tissue is autonomous for the synthesis of THF. During germination, folate accumulates in cotyledons and embryos, but high amounts of HPPK-DHPS are only observed in embryos. During organ differentiation, folate is synthesized preferentially in highly dividing tissues and in photosynthetic leaves. This is associated with high levels of the HPPK-DHPS mRNA and protein, and a pool of folate 3- to 5-fold higher than in the rest of the plant. In germinating embryos and in meristematic tissues, the high capacity to synthesize and accumulate folate correlates with the general resumption of cell metabolism and the high requirement for nucleotide synthesis, major cellular processes involving folate coenzymes. The particular status of folate synthesis in leaves is related to light. Thus, when illuminated, etiolated leaves gradually accumulate the HPPK-DHPS enzyme and folate. This suggests that folate synthesis plays an important role in the transition from heterotrophic to photoautotrophic growth. Analysis of the intracellular distribution of folate in green and etiolated leaves indicates that the coenzymes accumulate mainly in the cytosol, where they can supply the high demand for methyl groups.


Journal of Biological Chemistry | 2005

Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids

Sebastian Klaus; Edmund R. S. Kunji; Gale G. Bozzo; Alexandre Noiriel; Rocío Díaz de la Garza; Gilles J. Basset; Stéphane Ravanel; Fabrice Rébeillé; Jesse F. Gregory; Andrew D. Hanson

Cyanobacterial and plant genomes encode proteins with some similarity to the folate and biopterin transporters of the trypanosomatid parasite Leishmania. The Synechocystis slr0642 gene product and its closest Arabidopsis homolog, the At2g32040 gene product, are representative examples. Both have 12 probable transmembrane domains, and the At2g32040 protein has a predicted chloroplast transit peptide. When expressed in Escherichia coli pabA pabB or folE, mutants, which are unable to produce or take up folates, the slr0642 protein and a modified At2g32040 protein (truncated and fused to the N terminus of slr0642) enabled growth on 5-formyltetrahydrofolate or folic acid but not on 5-formyltetrahydrofolate triglutamate, demonstrating that both proteins mediate folate monoglutamate transport. Both proteins also mediate transport of the antifolate analogs methotrexate and aminopterin, as evidenced by their ability to greatly increase the sensitivity of E. coli to these inhibitors. The full-length At2g32040 polypeptide was translocated into isolated pea chloroplasts and, when fused to green fluorescent protein, directed the passenger protein to the envelope of Arabidopsis chloroplasts in transient expression experiments. At2g32040 transcripts were present at similar levels in roots and aerial organs, indicating that the protein occurs in non-green plastids as well as chloroplasts. Insertional inactivation of At2g32040 significantly raised the total folate content of chloroplasts and lowered the proportion of 5-methyltetrahydrofolate but did not discernibly affect growth. These findings establish conservation of function among folate and biopterin transporter family proteins from three kingdoms of life.


Critical Reviews in Plant Sciences | 2010

Folates and Folic Acid: From Fundamental Research Toward Sustainable Health

Dieter Blancquaert; Sergei Storozhenko; Karen Loizeau; Hans De Steur; Veerle De Brouwer; Jacques Viaene; Stéphane Ravanel; Fabrice Rébeillé; Willy E. Lambert; Dominique Van Der Straeten

Folates are of paramount importance in one-carbon metabolism of most organisms. Plants and microorganisms are able to synthesize folates de novo, making them the main dietary source for humans and animals, which are dependent on food or feed supplies for folates. Folate deficiency is an increasing problem in the developing, as well as in the developed regions of the world, affecting millions of people. Different strategies, such as food fortification and folic acid supplementation, remain far from accessible for the poor rural populations in developing countries. Increasing knowledge concerning folate biosynthesis, transport and catabolism does not only deepen our insight on the regulation of folate metabolism but also provides the keys towards folate enhancement through metabolic engineering in bacteria, as well as in plants. Recently, promising results were obtained using such an approach, but further fundamental research is a prerequisite to develop a practicable solution to fight folate deficiency. In parallel, progress in the development and improvement of folate analysis has been made. Here, we provide the state-of-the-art of folate biosynthesis, catabolism, and salvage. Finally, we report on progress in folate biofortification and discuss the agroeconomical aspect of biofortified crop plants.


Annual Review of Genetics | 2012

The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes

Norbert Rolland; Gilles Curien; Giovanni Finazzi; Marcel Kuntz; Eric Maréchal; Michel Matringe; Stéphane Ravanel; Daphné Seigneurin-Berny

Plastids are semiautonomous organelles derived from cyanobacterial ancestors. Following endosymbiosis, plastids have evolved to optimize their functions, thereby limiting metabolic redundancy with other cell compartments. Contemporary plastids have also recruited proteins produced by the nuclear genome of the host cell. In addition, many genes acquired from the cyanobacterial ancestor evolved to code for proteins that are targeted to cell compartments other than the plastid. Consequently, metabolic pathways are now a patchwork of enzymes of diverse origins, located in various cell compartments. Because of this, a wide range of metabolites and ions traffic between the plastids and other cell compartments. In this review, we provide a comprehensive analysis of the well-known, and of the as yet uncharacterized, chloroplast/cytosol exchange processes, which can be deduced from what is currently known about compartmentation of plant-cell metabolism.


Plant Physiology | 2005

Biotin Synthesis in Plants. The First Committed Step of the Pathway Is Catalyzed by a Cytosolic 7-Keto-8-Aminopelargonic Acid Synthase

Violaine Pinon; Stéphane Ravanel; Roland Douce; Claude Alban

Biochemical and molecular characterization of the biotin biosynthetic pathway in plants has dealt primarily with biotin synthase. This enzyme catalyzing the last step of the pathway is localized in mitochondria. Other enzymes of the pathway are however largely unknown. In this study, a genomic-based approach allowed us to clone an Arabidopsis (Arabidopsis thaliana) cDNA coding 7-keto-8-aminopelargonic acid (KAPA) synthase, the first committed enzyme of the biotin synthesis pathway, which we named AtbioF. The function of the enzyme was demonstrated by functional complementation of an Escherichia coli mutant deficient in KAPA synthase reaction, and by measuring in vitro activity. Overproduction and purification of recombinant AtbioF protein enabled a thorough characterization of the kinetic properties of the enzyme and a spectroscopic study of the enzyme interaction with its substrates and product. This is the first characterization of a KAPA synthase reaction in eukaryotes. Finally, both green fluorescent protein-targeting experiments and western-blot analyses showed that the Arabidopsis KAPA synthase is present in cytosol, thus revealing a unique compartmentation of the plant biotin synthesis, split between cytosol and mitochondria. The significance of the complex compartmentation of biotin synthesis and utilization in the plant cell and its potential importance in the regulation of biotin metabolism are also discussed.


Biochemical Journal | 2002

Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities.

Jean-Marie Mouillon; Stéphane Ravanel; Roland Douce; Fabrice Rébeillé

The plant enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (HPPK/DHPS) is a mitochondrial bifunctional protein involved in tetrahydrofolate synthesis. The first domain (HPPK) catalyses the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (dihydropterin) by ATP, leading to 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (dihydropterinPP(i)) and AMP. The second domain (DHPS) catalyses the next step, i.e. the condensation of p-aminobenzoic acid (p-ABA) with dihydropterinPP(i) to give 7,8-dihydropteroate (dihydropteroate) and PP(i). In the present article we studied the coupling between these two reactions. Kinetic data obtained for the HPPK domain are consistent with an ordered Bi Bi mechanism where ATP binds first and dihydropterinPP(i) is released last, as proposed previously for the monofunctional Escherichia coli enzyme. In the absence of p-ABA, AMP and dihydropterinPP(i) accumulate and negatively regulate the reaction. In the presence of p-ABA, the rates of AMP and dihydropteroate synthesis are similar, indicating a good coupling between the two reactions. DihydropterinPP(i), an intermediate of the two reactions, never accumulates in this situation. The high specific activity of DHPS relative to HPPK, rather than a preferential channelling of dihydropterinPP(i) between the two catalytic sites, could explain these kinetic data. The maximal velocity of the DHPS domain is limited by the availability of dihydropterinPP(i). It is strongly feedback-inhibited by dihydropteroate and also dihydrofolate and tetrahydrofolate monoglutamate, two intermediates synthesized downstream in the folate biosynthetic pathway. Thus the HPPK domain of this bifunctional protein is the limiting factor of the overall reaction, but the DHPS domain is a potential key regulatory point of the whole folate biosynthetic pathway.


Plant Journal | 2010

Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development.

Payam Mehrshahi; Sabrina Gonzalez-Jorge; Tariq A. Akhtar; Jane L. Ward; Anahi Santoyo-Castelazo; Susan E. Marcus; Aurora Lara-Núñez; Stéphane Ravanel; Nathaniel D. Hawkins; Michael H. Beale; David A. Barrett; J. Paul Knox; Jesse F. Gregory; Andrew D. Hanson; Malcolm J. Bennett; Dean DellaPenna

Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.

Collaboration


Dive into the Stéphane Ravanel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Douce

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Douce

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Loizeau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claude Alban

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Samuel Jabrin

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Gilles J. Basset

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge