Stéphane Rocchi
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Rocchi.
Cell | 2002
Frédéric Picard; Martine Gehin; Jean Sébastien Annicotte; Stéphane Rocchi; Marie-France Champy; Bert W. O'Malley; Pierre Chambon; Johan Auwerx
We have explored the effects of two members of the p160 coregulator family on energy homeostasis. TIF2-/- mice are protected against obesity and display enhanced adaptive thermogenesis, whereas SRC-1-/- mice are prone to obesity due to reduced energy expenditure. In white adipose tissue, lack of TIF2 decreases PPARgamma activity and reduces fat accumulation, whereas in brown adipose tissue it facilitates the interaction between SRC-1 and PGC-1alpha, which induces PGC-1alphas thermogenic activity. Interestingly, a high-fat diet increases the TIF2/SRC-1 expression ratio, which may contribute to weight gain. These results reveal that the relative level of TIF2/SRC-1 can modulate energy metabolism.
Molecular Cell | 2001
Stéphane Rocchi; Frédéric Picard; Joseph Vamecq; Laurent Gelman; Noelle Potier; Denis Zeyer; Laurent Dubuquoy; Pierre Bac; Marie-France Champy; Kelli D. Plunket; Lisa M. Leesnitzer; Steven G. Blanchard; Pierre Desreumaux; Dino Moras; Jean-Paul Renaud; Johan Auwerx
FMOC-L-Leucine (F-L-Leu) is a chemically distinct PPARgamma ligand. Two molecules of F-L-Leu bind to the ligand binding domain of a single PPARgamma molecule, making its mode of receptor interaction distinct from that of other nuclear receptor ligands. F-L-Leu induces a particular allosteric configuration of PPARgamma, resulting in differential cofactor recruitment and translating in distinct pharmacological properties. F-L-Leu activates PPARgamma with a lower potency, but a similar maximal efficacy, than rosiglitazone. The particular PPARgamma configuration induced by F-L-Leu leads to a modified pattern of target gene activation. F-L-Leu improves insulin sensitivity in normal, diet-induced glucose-intolerant, and in diabetic db/db mice, yet it has a lower adipogenic activity. These biological effects suggest that F-L-Leu is a selective PPARgamma modulator that activates some (insulin sensitization), but not all (adipogenesis), PPARgamma-signaling pathways.
Cell Death and Disease | 2011
Tomic T; Botton T; Michaël Cerezo; Guillaume Robert; Frederic Luciano; Alexandre Puissant; Gounon P; Allegra M; Corine Bertolotto; Bereder Jm; Tartare-Deckert S; Bahadoran P; Patrick Auberger; Robert Ballotti; Stéphane Rocchi
Metformin is the most widely used antidiabetic drug because of its proven efficacy and limited secondary effects. Interestingly, recent studies have reported that metformin can block the growth of different tumor types. Here, we show that metformin exerts antiproliferative effects on melanoma cells, whereas normal human melanocytes are resistant to these metformin-induced effects. To better understand the basis of this antiproliferative effect of metformin in melanoma, we characterized the sequence of events underlying metformin action. We showed that 24 h metformin treatment induced a cell cycle arrest in G0/G1 phases, while after 72 h, melanoma cells underwent autophagy as demonstrated by electron microscopy, immunochemistry, and by quantification of the autolysosome-associated LC3 and Beclin1 proteins. In addition, 96 h post metformin treatment we observed robust apoptosis of melanoma cells. Interestingly, inhibition of autophagy by knocking down LC3 or ATG5 decreased the extent of apoptosis, and suppressed the antiproliferative effect of metformin on melanoma cells, suggesting that apoptosis is a consequence of autophagy. The relevance of these observations were confirmed in vivo, as we showed that metformin treatment impaired the melanoma tumor growth in mice, and induced autophagy and apoptosis markers. Taken together, our data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma.
Oncogene | 2000
Philippe Gual; Silvia Giordano; Tracy A. Williams; Stéphane Rocchi; Emmanuel Van Obberghen; Paolo M. Comoglio
A distinctive property of Hepatocyte Growth Factor (HGF) is its ability to induce differentiation of tubular structures from epithelial and endothelial cells (branching tubulogenesis). The HGF receptor directly activates PI3 kinase, Ras and STAT signalling pathways and phosphorylates the adaptator GRB2 Associated Binder-1 (Gab1). Gab1 is also phosphorylated in response to Epidermal Growth Factor (EGF) but is unable to induce tubule formation. Comparison of 32P-peptide maps of Gab1 from EGF- versus HGF-treated cells, demonstrates that the same sites are phosphorylated in vivo. However, while both EGF and HGF induce rapid tyrosine phosphorylation of Gab1 with a peak at 15 min, the phosphorylation persists for over 1 h, only in response to HGF. Nine tyrosines are phosphorylated by both receptors. Three of them (Y307, Y373, Y407) bind phospholipase C-γ (PLC-γ). Interestingly, the overexpression of a Gab1 mutant unable to bind PLC-γ (Gab1 Y307/373/407F) did not alter HGF-stimulated cell scattering, only partially reduced the growth stimulation but completely abolished HGF-mediated tubulogenesis. It is concluded that sustained recruitment of PLCγ to Gab1 plays an important role in branching tubulogenesis.
Oncogene | 2011
Y Cheli; S Guiliano; T Botton; Stéphane Rocchi; V Hofman; Paul Hofman; Philippe Bahadoran; Corine Bertolotto; Robert Ballotti
In melanoma, as well as in other solid tumors, the cells within a given tumor exhibit strong morphological, functional and molecular heterogeneity that might reflect the existence of different cancer cell populations, among which are melanoma-initiating cells (MICs) with ‘stemness’ properties and their differentiated, fast-growing progeny. The existence of a slow-growing population might explain the resistance of melanoma to classical chemotherapies that target fast growing cells. Therefore, elucidating the biologic properties of MICs and, more importantly, the molecular mechanisms that drive the transition between MICs and their proliferating progeny needs to be addressed to develop an efficient melanoma therapy. Using B16 mouse melanoma cells and syngeneic mice, we show that the inhibition of microphthalmia-associated transcription factor (Mitf), the master regulator of melanocyte differentiation, increases the tumorigenic potential of melanoma cells and upregulates the stem cell markers Oct4 and Nanog. Notably, p27, the CDK inhibitor, is increased in Mitf-depleted cells and is required for exacerbation of the tumorigenic properties of melanoma cells. Further, a slow-growing population with low-Mitf level and high tumorigenic potential exists spontaneously in melanoma. Ablation of this population dramatically decreases tumor formation. Importantly, these data were confirmed using human melanoma cell lines and freshly isolated human melanoma cell from lymph node and skin melanoma metastasis. Taken together our data, identified Mitf and p27 as the key molecular switches that control the transition between MICs and their differentiated progeny. Eradication of low-Mitf cells might be an appealing strategy to cure melanoma.
Genes & Development | 2011
Mickaël Ohanna; Sandy Giuliano; Caroline Bonet; Véronique Imbert; Véronique Hofman; Joséphine Zangari; Karine Bille; Caroline Robert; Brigitte Bressac-de Paillerets; Paul Hofman; Stéphane Rocchi; Jean-Francxois Peyron; Jean-Philippe Lacour; Robert Ballotti; Corine Bertolotto
Melanoma cells can enter the process of senescence, but whether they express a secretory phenotype, as reported for other cells, is undetermined. This is of paramount importance, because this secretome can alter the tumor microenvironment and the response to chemotherapeutic drugs. More generally, the molecular events involved in formation of the senescent-associated secretome have yet to be determined. We reveal here that melanoma cells experiencing senescence in response to diverse stimuli, including anti-melanoma drugs, produce an inflammatory secretory profile, where the chemokine ligand-2 (CCL2) acts as a critical effector. Thus, we reveal how senescence induction might be involved in therapeutic failure in melanoma. We further provide a molecular relationship between senescence induction and secretome formation by revealing that the poly(ADP-ribose) polymerase-1 (PARP-1)/nuclear factor-κB (NF-κB) signaling cascade, activated during senescence, drives the formation of a secretome endowed with protumoral and prometastatic properties. Our findings also point to the existence of the PARP-1 and NF-κB-associated secretome, termed the PNAS, in nonmelanoma cells. Most importantly, inhibition of PARP-1 or NF-κB prevents the proinvasive properties of the secretome. Collectively, identification of the PARP-1/NF-κB axis in secretome formation opens new avenues for therapeutic intervention against cancers.
European Journal of Clinical Investigation | 2001
E Van Obberghen; V Baron; Laurent Delahaye; Brice Emanuelli; Nathalie Filippa; Sophie Giorgetti-Peraldi; Patricia Lebrun; I. Mothe-Satney; Pascal Peraldi; Stéphane Rocchi; Dominique Sawka-Verhelle; Sophie Tartare-Deckert; J. Giudicelli
The diverse biological actions of insulin and insulin‐like growth factor I (IGF‐I) are initiated by binding of the polypeptides to their respective cell surface tyrosine kinase receptors. These activated receptors phosphorylate a series of endogenous substrates on tyrosine, amongst which the insulin receptor substrate (IRS) proteins are the best characterized. Their phosphotyrosine‐containing motifs become binding sites for Src homology 2 (SH2) domains on proteins such as SH2 domain‐containing protein‐tyrosine‐phosphatase (SHP)‐2/Syp, growth factor receptor bound‐2 protien, (Grb‐2), and phosphatidyl inositol 3 kinase (PI3 kinase), which participate in activation of specific signaling cascades. However, the IRS molecules are not only platforms for signaling molecules, they also orchestrate the generation of signal specificity, integration of signals induced by several extracellular stimuli, and signal termination and modulation. An extensive review is beyond the scope of the present article, which will be centered on our own contribution and reflect our biases.
Molecular Cancer Therapeutics | 2013
Michaël Cerezo; Mélanie Tichet; Patricia Abbe; Mickaël Ohanna; Abdelali Lehraiki; Florian Rouaud; Maryline Allegra; Damien Giacchero; Philippe Bahadoran; Corine Bertolotto; Sophie Tartare-Deckert; Robert Ballotti; Stéphane Rocchi
Metformin was reported to inhibit the proliferation of many cancer cells, including melanoma cells. In this report, we investigated the effect of metformin on melanoma invasion and metastasis development. Using different in vitro approaches, we found that metformin inhibits cell invasion without affecting cell migration and independently of antiproliferation action. This inhibition is correlated with modulation of expression of proteins involved in epithelial–mesenchymal transition such as Slug, Snail, SPARC, fibronectin, and N-cadherin and with inhibition of MMP-2 and MMP-9 activation. Furthermore, our data indicate that this process is dependent on activation of AMPK and tumor suppressor protein p53. Finally, we showed that metformin inhibits melanoma metastasis development in mice using extravasation and metastasis models. The presented data reinforce the fact that metformin might be a good candidate for clinical trial in melanoma treatment. Mol Cancer Ther; 12(8); 1605–15. ©2013 AACR.
Diabetes | 2008
Damien Demozay; Jean-Christophe Mas; Stéphane Rocchi; Emmanuel Van Obberghen
OBJECTIVE— Oxidative stress is associated with insulin resistance and is thought to contribute to progression toward type 2 diabetes. Oxidation induces cellular damages through increased amounts of reactive aldehydes from lipid peroxidation. The aim of our study was to investigate 1) the effect of the major lipid peroxidation end product, 4-hydroxynonenal (HNE), on insulin signaling in 3T3-L1 adipocytes, and 2) whether fatty aldehyde dehydrogenase (FALDH), which detoxifies HNE, protects cells and improves insulin action under oxidative stress conditions. RESEARCH DESIGN AND METHODS— 3T3-L1 adipocytes were exposed to HNE and/or infected with control adenovirus or adenovirus expressing FALDH. RESULTS— Treatment of 3T3-L1 adipocytes with HNE at nontoxic concentrations leads to a pronounced decrease in insulin receptor substrate (IRS)-1/-2 proteins and in insulin-induced IRS and insulin receptor β (IRβ) tyrosine phosphorylation. Remarkably, we detect increased binding of HNE to IRS-1/-2–generating HNE-IRS adducts, which likely impair IRS function and favor their degradation. Phosphatidylinositol 3-kinase and protein kinase B activities are also downregulated upon HNE treatment, resulting in blunted metabolic responses. Moreover, FALDH, by reducing adduct formation, partially restores HNE-generated decrease in insulin-induced IRS-1 tyrosine phosphorylation and metabolic responses. Moreover, rosiglitazone could have an antioxidant effect because it blocks the noxious HNE action on IRS-1 by increasing FALDH gene expression. Collectively, our data show that FALDH improves insulin action in HNE-treated 3T3-L1 adipocytes. CONCLUSION— Oxidative stress induced by reactive aldehydes, such as HNE, is implicated in the development of insulin resistance in 3T3-L1 adipocytes, which is alleviated by FALDH. Hence, detoxifying enzymes could play a crucial role in blocking progression of insulin resistance to diabetes.
Annals of Medicine | 1999
Stéphane Rocchi; Johan Auwerx
The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear receptor that controls the expression of a large array of genes involved in adipocyte differentiation, lipid storage and insulin sensitization. PPARgamma is bound and activated by prostaglandin J2 and fatty acid derivatives, which are its natural ligands. In addition, thiazolidinediones and nonsteroidal anti-inflammatory drugs are synthetic ligands and agonists of this receptor. Several studies have recently shown that this nuclear receptor has a role expanding beyond metabolism (diabetes and obesity) with functions in cell cycle control, carcinogenesis, inflammation and atherosclerosis. This review addresses the role of PPARgamma in these processes.