Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphane Rousseau is active.

Publication


Featured researches published by Stéphane Rousseau.


Neurology | 2013

Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification

Gaël Nicolas; Cyril Pottier; David Maltête; Sophie Coutant; Anne Rovelet-Lecrux; Solenn Legallic; Stéphane Rousseau; Y. Vaschalde; Lucie Guyant-Maréchal; J. Augustin; Olivier Martinaud; Luc Defebvre; Pierre Krystkowiak; Jérémie Pariente; M. Clanet; Pierre Labauge; Xavier Ayrignac; Romain Lefaucheur; I. Le Ber; Thierry Frebourg; Didier Hannequin; Dominique Campion

Objectives: To identify a new idiopathic basal ganglia calcification (IBGC)-causing gene. Methods: In a 3-generation family with no SLC20A2 mutation, we performed whole exome sequencing in 2 affected first cousins, once removed. Nonsynonymous coding variants, splice acceptor and donor site variants, and frameshift coding indels (NS/SS/I) were filtered against dbSNP131, the HapMap Project, 1000 Genomes Project, and our in-house database including 72 exomes. Results: Seventeen genes were affected by identical unknown NS/SS/I variations in the 2 patients. After screening the relatives, the p.Leu658Pro substitution within the PDGFRB gene remained the sole unknown mutation segregating with the disease in the family. This variation, which is predicted to be highly damaging, was present in 13 of 13 affected subjects and absent in 8 relatives without calcifications. Sequencing PDGFRB of 19 other unrelated IBGC cases allowed us to detect another potentially pathogenic substitution within PDGFRB, p.Arg987Trp, also predicted to be highly damaging. PDGFRB encodes a protein involved in angiogenesis and in the regulation of inorganic phosphate (Pi) transport in vascular smooth muscle cells via Pit-1, a Pi transporter encoded by SLC20A1. Conclusion: Mutations of PDGFRB further support the involvement of this biological pathway in IBGC pathophysiology.


Journal of Alzheimer's Disease | 2013

TREM2 R47H Variant as a Risk Factor for Early-Onset Alzheimer's Disease

Cyril Pottier; David Wallon; Stéphane Rousseau; Anne Rovelet-Lecrux; Anne-Claire Richard; Adeline Rollin-Sillaire; Thierry Frebourg; Dominique Campion; Didier Hannequin

The rs75932628-T variant of the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has recently been identified as a rare risk factor for late-onset Alzheimers disease (AD). In this study we examined the association between TREM2 exon 2 variants and early-onset AD in a sample of Caucasian subjects of French origin including 726 patients with age of onset ≤65 years and 783 controls. Only the rs75932628-T variant (predicted to cause an R47H substitution) conferred a significant risk for early-onset AD (OR, 4.07; 95% CI, 1.3 to 16.9; p = 0.009). These results confirm the association between this variant and AD and underline its involvement in early-onset cases.


Journal of Alzheimer's Disease | 2012

The French Series of Autosomal Dominant Early Onset Alzheimer's Disease Cases: Mutation Spectrum and Cerebrospinal Fluid Biomarkers

David Wallon; Stéphane Rousseau; Anne Rovelet-Lecrux; Muriel Quillard-Muraine; Lucie Guyant-Maréchal; Olivier Martinaud; Jérémie Pariente; Michèle Puel; Adeline Rollin-Sillaire; Florence Pasquier; Isabelle Le Ber; Marie Sarazin; Bernard Croisile; Claire Boutoleau-Bretonnière; Catherine Thomas-Anterion; Claire Paquet; Olivier Moreaud; Audrey Gabelle; François Sellal; Mathilde Sauvée; Annie Laquerrière; Charles Duyckaerts; Marie-Bernadette Delisle; Nathalie Streichenberger; Béatrice Lannes; Thierry Frebourg; Didier Hannequin; Dominique Campion

We describe 56 novel autosomal dominant early-onset Alzheimer disease (ADEOAD) families with PSEN1, PSEN2, and AβPP mutations or duplications, raising the total of families with mutations on known genes to 111 (74 PSEN1, 8 PSEN2, 16 AβPP, and 13 AβPP duplications) in the French series. In 33 additional families (23% of the series), the genetic determinism remained uncharacterized after this screening. Cerebrospinal fluid (CSF) biomarker levels were obtained for patients of 58 families (42 with known mutations and 16 without genetic characterization). CSF biomarkers profile was consistent with an AD diagnosis in 90% of families carrying mutations on known genes. In families without mutation, CSF biomarkers were consistent with AD diagnosis in 14/16 cases. Overall, these results support further genetic heterogeneity in the determinism of ADEOAD and suggest that other major genes remain to be characterized.


Molecular Psychiatry | 2016

SORL1 rare variants: a major risk factor for familial early-onset Alzheimer's disease.

Gaël Nicolas; Camille Charbonnier; David Wallon; Olivier Quenez; Céline Bellenguez; Benjamin Grenier-Boley; Stéphane Rousseau; A-C Richard; Anne Rovelet-Lecrux; K Le Guennec; Delphine Bacq; J-G Garnier; Robert Olaso; Anne Boland; Vincent Meyer; J-F Deleuze; Philippe Amouyel; Hans Markus Munter; Guillaume Bourque; Mark Lathrop; Thierry Frebourg; Richard Redon; Luc Letenneur; J.-F. Dartigues; Emmanuelle Génin; J-C Lambert; Didier Hannequin; D. Campion

The SORL1 protein plays a protective role against the secretion of the amyloid β peptide, a key event in the pathogeny of Alzheimer’s disease. We assessed the impact of SORL1 rare variants in early-onset Alzheimer’s disease (EOAD) in a case–control setting. We conducted a whole exome analysis among 484 French EOAD patients and 498 ethnically matched controls. After collapsing rare variants (minor allele frequency ≤1%), we detected an enrichment of disruptive and predicted damaging missense SORL1 variants in cases (odds radio (OR)=5.03, 95% confidence interval (CI)=(2.02–14.99), P=7.49.10−5). This enrichment was even stronger when restricting the analysis to the 205 cases with a positive family history (OR=8.86, 95% CI=(3.35–27.31), P=3.82.10−7). We conclude that predicted damaging rare SORL1 variants are a strong risk factor for EOAD and that the association signal is mainly driven by cases with positive family history.


European Journal of Human Genetics | 2014

A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia

Gaël Nicolas; Agnès Jacquin; Christel Thauvin-Robinet; Anne Rovelet-Lecrux; Olivier Rouaud; Cyril Pottier; Marie-Hélène Aubriot-Lorton; Stéphane Rousseau; David Wallon; Christian Duvillard; Yannick Béjot; Thierry Frebourg; Maurice Giroud; Dominique Campion; Didier Hannequin

Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents’ CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents’ DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case.


European Journal of Human Genetics | 2016

Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons

Gaël Nicolas; David Wallon; Camille Charbonnier; Olivier Quenez; Stéphane Rousseau; Anne-Claire Richard; Anne Rovelet-Lecrux; Sophie Coutant; Kilan Le Guennec; Delphine Bacq; Jean-Guillaume Garnier; Robert Olaso; Anne Boland; Vincent Meyer; Jean-François Deleuze; Hans Markus Munter; Guillaume Bourque; Daniel Auld; Alexandre Montpetit; Mark Lathrop; Lucie Guyant-Maréchal; Olivier Martinaud; Jérémie Pariente; Adeline Rollin-Sillaire; Florence Pasquier; Isabelle Le Ber; Marie Sarazin; Bernard Croisile; Claire Boutoleau-Bretonnière; Catherine Thomas-Anterion

Causative variants in APP, PSEN1 or PSEN2 account for a majority of cases of autosomal dominant early-onset Alzheimer disease (ADEOAD, onset before 65 years). Variant detection rates in other EOAD patients, that is, with family history of late-onset AD (LOAD) (and no incidence of EOAD) and sporadic cases might be much lower. We analyzed the genomes from 264 patients using whole-exome sequencing (WES) with high depth of coverage: 90 EOAD patients with family history of LOAD and no incidence of EOAD in the family and 174 patients with sporadic AD starting between 51 and 65 years. We found three PSEN1 and one PSEN2 causative, probably or possibly causative variants in four patients (1.5%). Given the absence of PSEN1, PSEN2 and APP causative variants, we investigated whether these 260 patients might be burdened with protein-modifying variants in 20 genes that were previously shown to cause other types of dementia when mutated. For this analysis, we included an additional set of 160 patients who were previously shown to be free of causative variants in PSEN1, PSEN2 and APP: 107 ADEOAD patients and 53 sporadic EOAD patients with an age of onset before 51 years. In these 420 patients, we detected no variant that might modify the function of the 20 dementia-causing genes. We conclude that EOAD patients with family history of LOAD and no incidence of EOAD in the family or patients with sporadic AD starting between 51 and 65 years have a low variant-detection rate in AD genes.


Neurology | 2016

ABCA7 rare variants and Alzheimer disease risk

Kilan Le Guennec; Gaël Nicolas; Olivier Quenez; Camille Charbonnier; David Wallon; Céline Bellenguez; Benjamin Grenier-Boley; Stéphane Rousseau; Anne-Claire Richard; Anne Rovelet-Lecrux; Delphine Bacq; Jean-Guillaume Garnier; Robert Olaso; Anne Boland; Vincent Meyer; Jean-François Deleuze; Philippe Amouyel; Hans Markus Munter; Guillaume Bourque; Mark Lathrop; Thierry Frebourg; Richard Redon; Luc Letenneur; Jean-François Dartigues; Florence Pasquier; Adeline Rollin-Sillaire; Emmanuelle Génin; Jean-Charles Lambert; Didier Hannequin; Dominique Campion

Objective: To study the association between ABCA7 rare coding variants and Alzheimer disease (AD) in a case-control setting. Methods: We conducted a whole exome analysis among 484 French patients with early-onset AD and 590 ethnically matched controls. Results: After collapsing rare variants (minor allele frequency ≤1%), we detected an enrichment of ABCA7 loss of function (LOF) and predicted damaging missense variants in cases (odds ratio [OR] 3.40, 95% confidence interval [CI] 1.68–7.35, p = 0.0002). Performing a meta-analysis with previously published data, we found that in a combined sample of 1,256 patients and 1,347 controls from France and Belgium, the OR was 2.81 (95% CI 1.89–4.20, p = 3.60 × 10−7). Conclusions: These results confirm that ABCA7 LOF variants are enriched in patients with AD and extend this finding to predicted damaging missense variants.


Molecular Psychiatry | 2015

De novo deleterious genetic variations target a biological network centered on Aβ peptide in early-onset Alzheimer disease.

Anne Rovelet-Lecrux; Camille Charbonnier; David Wallon; Gaël Nicolas; M N J Seaman; C Pottier; S Y Breusegem; Premendu P. Mathur; Pranitha Jenardhanan; K Le Guennec; A S Mukadam; Olivier Quenez; Sophie Coutant; Stéphane Rousseau; A-C Richard; Anne Boland; J-F Deleuze; Thierry Frebourg; Didier Hannequin; Dominique Campion

We hypothesized that de novo variants (DNV) might participate in the genetic determinism of sporadic early-onset Alzheimer disease (EOAD, onset before 65 years). We investigated 14 sporadic EOAD trios first by array-comparative genomic hybridization. Two patients carried a de novo copy number variation (CNV). We then performed whole-exome sequencing in the 12 remaining trios and identified 12 non-synonymous DNVs in six patients. The two de novo CNVs (an amyloid precursor protein (APP) duplication and a BACE2 intronic deletion) and 3/12 non-synonymous DNVs (in PSEN1, VPS35 and MARK4) targeted genes from a biological network centered on the Amyloid beta (Aβ) peptide. We showed that this a priori-defined genetic network was significantly enriched in amino acid-altering DNV, compared with the rest of the exome. The causality of the APP de novo duplication (which is the first reported one) was obvious. In addition, we provided evidence of the functional impact of the following three non-synonymous DNVs targeting this network: the novel PSEN1 variant resulted in exon 9 skipping in patient’s RNA, leading to a pathogenic missense at exons 8–10 junction; the VPS35 missense variant led to partial loss of retromer function, which may impact neuronal APP trafficking and Aβ secretion; and the MARK4 multiple nucleotide variant resulted into increased Tau phosphorylation, which may trigger enhanced Aβ-induced toxicity. Despite the difficulty to recruit Alzheimer disease (AD) trios owing to age structures of the pedigrees and the genetic heterogeneity of the disease, this strategy allowed us to highlight the role of de novo pathogenic events, the putative involvement of new genes in AD genetics and the key role of Aβ network alteration in AD.


PLOS Medicine | 2017

APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases

Hélène-Marie Lanoiselée; Gaël Nicolas; David Wallon; Anne Rovelet-Lecrux; Morgane Lacour; Stéphane Rousseau; Anne-Claire Richard; Florence Pasquier; Adeline Rollin-Sillaire; Olivier Martinaud; Muriel Quillard-Muraine; Vincent de La Sayette; Claire Boutoleau-Bretonnière; Frédérique Etcharry-Bouyx; Valérie Chauviré; Marie Sarazin; Isabelle Le Ber; Stéphane Epelbaum; Thérèse Rivasseau Jonveaux; Olivier Rouaud; Mathieu Ceccaldi; Olivier Felician; Olivier Godefroy; Maite Formaglio; Bernard Croisile; Sophie Auriacombe; Ludivine Chamard; Jean Louis Vincent; Mathilde Sauvée; Cecilia Marelli-Tosi

Background Amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series. Methods and findings We report here a novel update (2012–2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers—total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42—in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification. Conclusions Our findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants.


Molecular Psychiatry | 2017

17q21.31 duplication causes prominent tau-related dementia with increased MAPT expression

K Le Guennec; Olivier Quenez; Gaël Nicolas; David Wallon; Stéphane Rousseau; A-C Richard; John Franklin Alexander; Peristera Paschou; Camille Charbonnier; Céline Bellenguez; Benjamin Grenier-Boley; Doris Lechner; M-T Bihoreau; Robert Olaso; Anne Boland; Vincent Meyer; J-F Deleuze; Philippe Amouyel; Hans Markus Munter; Guillaume Bourque; Mark Lathrop; Thierry Frebourg; Richard Redon; Luc Letenneur; J.-F. Dartigues; Olivier Martinaud; Ognian Kalev; Shima Mehrabian; Latchezar Traykov; Thomas Ströbel

To assess the role of rare copy number variations in Alzheimers disease (AD), we conducted a case–control study using whole-exome sequencing data from 522 early-onset cases and 584 controls. The most recurrent rearrangement was a 17q21.31 microduplication, overlapping the CRHR1, MAPT, STH and KANSL1 genes that was found in four cases, including one de novo rearrangement, and was absent in controls. The increased MAPT gene dosage led to a 1.6–1.9-fold expression of the MAPT messenger RNA. Clinical signs, neuroimaging and cerebrospinal fluid biomarker profiles were consistent with an AD diagnosis in MAPT duplication carriers. However, amyloid positon emission tomography (PET) imaging, performed in three patients, was negative. Analysis of an additional case with neuropathological examination confirmed that the MAPT duplication causes a complex tauopathy, including prominent neurofibrillary tangle pathology in the medial temporal lobe without amyloid-β deposits. 17q21.31 duplication is the genetic basis of a novel entity marked by prominent tauopathy, leading to early-onset dementia with an AD clinical phenotype. This entity could account for a proportion of probable AD cases with negative amyloid PET imaging recently identified in large clinical series.

Collaboration


Dive into the Stéphane Rousseau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge